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Superparamagnetic clustering of data

Shai Wiseman, Marcelo Blatt, and Eytan Domany
Department of Physics of Complex Systems, the Weizmann Institute of Science, Rehovot 76100, Israel

~Received 3 November 1997!

The physical aspects of a recently introduced method for data clustering are considered in detail. This
method is based on an inhomogeneous Potts model; no assumption concerning the underlying distribution of
the data is made. A Potts spin is assigned to each data point and short range interactions between neighboring
points are introduced. Spin-spin correlations~measured by Monte Carlo computations! serve to partition the
data points into clusters. In this paper we examine the effects of varying different details of the method such
as the definition of neighbors, the type of interaction, and the number of Potts statesq. In addition, we present
and solve a granular mean field Potts model relevant to the clustering method. The model consists of strongly
coupled groups of spins coupled to noise spins, which are themselves weakly coupled. The phase diagram is
computed by solving analytically the model in various limits. Our main result is that in the range of parameters
of interest the existence of the superparamagnetic phase is independent of the ordering process of the noise
spins. Next we use the known properties of regular and inhomogeneous Potts models in finite dimensions to
discuss the performance of the clustering method. In particular, the spatial resolution of the clustering method
is argued to be connected to the correlation length of spin fluctuations. The behavior of the method, as more
and more data points are sampled, is also investigated.@S1063-651X~98!05803-6#

PACS number~s!: 02.50.Rj, 05.70.Fh, 89.70.1c
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I. A PEDESTRIAN’S INTRODUCTION
TO CLUSTERING

The compelling connections between information the
and statistical physics have given rise to a fruitful exchan
of ideas between the two disciplines. It is no wonder th
that ideas and tools of statistical mechanics can prove v
useful in solving difficult problems in information proces
ing. In this work we represent the problem of data cluster
as that of finding the probable states of an inhomogene
Potts model. By solving the physics of this Potts model
are able to give good solutions to the data clustering pr
lem. We dedicate most of the Introduction to a short bia
review of the data clustering field and the problematics
herent to many of the methods that were used to solve
problem.

Clustering is an important technique in exploratory ana
sis of information or data. Since information analysis
needed in a large variety of engineering and scientific pr
lems, it is no wonder that clustering is used in diverse fie
such as pattern recognition@1#, learning@2#, astrophysics@3#,
computer vision, biology, and more. The goal of data cl
tering is to divide the data according to natural clas
present in it. More formally the problem can be stated
follows:

Given i 51,2, . . . ,N patterns, represented as pointsxW i in a
D-dimensional metric space~in some cases only the dis
tances between all pairs of points are given!, determine the
partition of theseN points into M groups, calledclusters,
defined such that the definitionI of clusters is as follows:
points that belong to the same cluster are more similar
each other than to points in different clusters.Note that the
value ofM also has to be determined by the clustering p
cedure.

As a typical example of the use of clustering, suppose
571063-651X/98/57~4!/3767~17!/$15.00
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want to divide the iris flower population into species. O
expedition collects a large sample of iris flowers~patterns!.
For each flowerD properties are measured, such as the se
length and width, the petal length and width, etc. The valu
obtained for thei th flower determine the ‘‘location’’ of the

point xW i . If we chose to measure relevant properties, diff
ent regions of points in theD-dimensional space will corre
spond to different species of iris. The goal of clustering is
deduce from the distribution of the points, without anya
priori knowledge about the iris flowers population, whic
points ~or flowers! constitute a species and how many sp
cies are there.

A basic assumption in clustering is that the similarity
two pointsis a decreasing function of their mutual distanc
~This assumption is problematic when the scales of the
ferent dimensions are not simply related.! In order to imple-
ment definitionI though, one needs a way to measure
similarity between more than two points, which may cons
tute a cluster. In other words, the question is how to defin
proper ‘‘many body’’ similarity measure.

One possible definition of a measure for the similar
between points belonging to a cluster is based on the
sumption that the center of mass of the cluster’s points
sufficient representativeof the cluster~and all its points!.
The extent to which a point is correctly assigned to the cl
ter is then a function of its distance from the cluster rep
sentative. This is an example for a general approach kno
as theparametricclustering approach. The idea is to descri
the clusters’ structure by some parameters and use the
measure the similarity of a point to a cluster. This results
a cost function that usually needs to be minimized in orde
find the optimal clustering solution and its correspondi
parameters. Typical examples of this approach aredetermin-
istic annealing@4# and maximum likelihood@5#. In recent
years some parametric clustering algorithms, rooted in sta
3767 © 1998 The American Physical Society
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tical physics, were presented@4–6#. For example, the metho
of Rose, Gurevitch, and Fox@4# can be interpreted as a non
interactingq-state Potts system subject toq long-range field
sources located at the clusters’ centers.

The main drawback of this approach is that a cert
structure of the clusters is assumed~e.g., each cluster can b
represented by a center and a spread around it!. The result is
that some structure, which is assumed either correctly or
correctly, is imposed on the data. If the assumption is
from the truth it can lead to erroneous and misleading resu

Thus, when there is noa priori knowledge about the dat
structure, it is more natural to adoptnonparametriccluster-
ing methods, which are motivated by a local version of de
nition I : the definition II of clusters is as follows:The points
that constitute a cluster reside in a connected region
space, in which the density of points is relatively high. T
clusters are separated by a region in which the density
points is relatively low [7].It is clear that if severalneigh-
boring points are similar or close to each other then th
form a region of higher density, while several neighbori
points, which are all relatively far from each other, form
region of lower density. In this sense definition II follow
from applying definition I locally. Indeed,nonparametric
clustering methods uselocal criteria to decide whethe
neighboring points belong to the same cluster. The ove
structure emerges then from the transitive nature of de
tion II, where clusters are defined as connected regions.
is in accord with the transitivity inherent to sets. If pointA
and pointB belong to the same cluster, and pointsB andC
belong to the same cluster thenA andC must belong to the
same cluster.

The second definition seems at first sight a straight
ward working definition; all one needs to do is to construc
contour map of the density and declare the highlands ab
some height as clusters. Conceptually this is an approp
view of the essence of non-parametric clustering, though
important issue is the scale on which density is estimated
practice the task is extremely difficult since the common c
is that points are often distributed sparsely and irregularly
a high-dimensional space. These difficulties render g
based and basis functions based methods inappropriate
stead, many nonparametric clustering methods@1,8,7# have
been suggested and used, all of which are inherently ba
only on the points themselves. Some of these methods
hierarchical @1# and recursively apply nonlocal similarit
measures suitable for particular cluster shapes. Some a
rithms originate from graph theory@1# and utilize a graph
structure where the data points are vertices connected
edges of a graph. After removing the ‘‘inconsistent’’ edg
of the graph according to some local criterion, the clust
are defined as the connected components of the graph.
basic flaw of these methods is that the decision to remov
edge depends only on the distance between the two poin
connects. This is in contradiction to the grouplike spirit
definition I. Thus, applying a similarity measure that ma
tains the grouplike spirit of definition I, yields clustering th
is stable in the presence of noise, and is appropriate for
ferent cluster shapes and constitutes, is the crux of the n
parametric clustering approach.

Spin systems are a classic example of many body syst
where local two body interactions give rise to grouplike
n
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collective behavior. The collective behavior is expressed
the fact that many spins are found with high probability
the same state. Interpreting this as a sign of similarity, i
natural to view the spin-spin correlation function as a sim
larity measure. In contrast with the interpoint distance us
in many methods as a similarity measure, the spin-spin c
relation function is an inherently grouplike property and
influenced by the state of spins of a region of sizejD ~where
j is the correlation length!. The use of the Potts model fo
the clustering task is particularly appealing since its phys
can be completely understood in terms of geometricalclus-
ters @9#.

In the present work~a brief account of which was firs
presented in@10#! we advocate the use of an inhomogeneo
Potts model for solving the nonparametric clustering pro
lem. A detailed comparison with the performance of oth
techniques, which was reported in@11#, clearly indicates the
relative success of our method. Here we dwell on the ph
cal aspects of our method. In Sec. II we give a formal jus
fication to our approach, outline the method and explain h
it works. In Sec. III we analyze in detail a Potts mean fie
model that is relevant to the clustering problem. In Sec.
we describe our method in detail, its dependence and/or
dependence on various parameters, and show how it w
on a toy problem. In Sec. V we use heuristic physical ar
ments and various known properties of Potts models to c
sider how our method works for more realistic point dist
butions, which cannot be approximated by mean field. T
effect of interactions between neighboring regions with d
ferent densities of points is also considered, together with
validity of our approach in a relevant thermodynamic lim
The paper is summarized in Sec. VI.

II. STATISTICAL MECHANICS OF NONPARAMETRIC
CLASSIFICATION

The goal is to find the ‘‘best’’ classification for a give
distribution of data points. A classification$s% is defined by
assigning to each pointxW i a labelsi that may take integer
valuessi51, . . . ,q. We define a cost functionH@$s%#,

H@$s%#52(
^ i , j &

Ji j dsi ,sj
, si51, . . . ,q, ~1!

where^ i , j & stands for a pair of pointsi and j , andJi j is some
positive monotonically decreasing function of the distan
ixW i2xW j i , so that the closer two points are to each other,
more they ‘‘like’’ to belong to the same class. This co
function is the Hamiltonian of an inhomogeneous ferroma
netic Potts model@12#. Note thatq doesnot restrict the num-
ber of clusters.

We want to select a good classification using nothing
H@$s%#. Taking the usual path in information theory@13#, we
choose the probability distribution that has the most miss
information~entropy! and yet has some fixed average costE.
The resulting probability distribution is that of a Potts syste
at equilibrium at inverse temperatureb, which is the
Lagrange multiplier determining the average energy or c
E. Similarly to the fuzzy clustering approach@14#, the an-
swer is given in terms of a probability distribution of class
fications and not in terms of one good classification.~We do,
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57 3769SUPERPARAMAGNETIC CLUSTERING OF DATA
however, use this probability distribution, or more spec
cally spin-spin correlations, to propose a definite clusterin!
Because the cost function~1! is symmetric with respect to a
global permutation of all labels, each point is equally like
to belong to any one of theq classes. Therefore the only wa
to extract meaningful information~or to assign clusters! out
of the equilibrium probability distribution is through correla
tions. The average spin-spin correlation function^dsi ,sj

& ~the

probability that pointsi and j belong to the same class! is
thus used to decide whether or not two spins belong to
same cluster.

As a concrete demonstration of the manner in which
clustering answer depends on the temperature, place a
spin at each of the data points of Fig. 1. Here the dimens
is D52 and the number of data points isN56000. This is a
simple example intended for a pedagogical presentation
the problem. The example is not trivial since other metho
@15# fail on it. At high temperatures the system is in a diso
dered~paramagnetic! phase. As the temperature is lowered
transition to a super-paramagnetic phaseoccurs; spins
within the same high density region become complet
aligned, while different regions remain uncorrelated. As
temperature is further lowered, the effective coupling b
tween the three clusters~induced via the dilute backgroun
spins! increases, until they become aligned. Even though
is a pseudotransition~note the finite number of participatin
clusters! and the transition temperature of the background
much lower, we call this ‘‘phase’’ of aligned clusters ferr
magnetic.

In order to support this qualitative picture we analyze
the next section a relevant mean field Potts model. T
analysis serves to examine systematically the nature of
possible phases and phase transitions that could arise in
nection with the clustering problem. This is important sin
each phase is a stable~with respect to small temperatur
variations! solution of the clustering problem, while eac

FIG. 1. The classified data set. Points classified~with
Tclus50.075 andu50.5) as belonging to the three largest cluste
are marked by crosses, triangles, and3’s. Single point clusters are
denoted by squares.
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phase transition marks a sharp change in the clustering s
tion as a function of the temperature.

III. A MANY-CLUSTER POTTS MEAN FIELD MODEL
WITH NOISE

A. Motivation and definition of the model

In some clustering problems several dense groups
points are separated from each other by a sparse backgr
~or noise!. In some other typical cases the core of a group
denser than the region adjacent to its perimeter; con
quently, it may be very difficult to differentiate the regio
adjacent to the perimeter from noise. Thus the two classe
problems are effectively similar. We try to mimic this situ
tion by the following Potts system:~i! Nc points are divided
into M groups.~ii ! Pointswithin the same group interact with
interaction strength (M /Nc)J1. ~iii ! Nb points constitute a
background; the interaction between two such points is
strength (1/Nb)J2. ~iv! Every point that belongs to a grou
interacts with every point of the background with an intera
tion of strength (1/Nc)AM /NbJ3. The Hamiltonian of such a
Potts system is

H52
M

Nc
J1(

a51

M

(
i , j

ds
i
a ,s

j
a2

1

Nb
J2(

i , j
ds

i
b ,s

j
b

2
1

Nc
AM

Nb
J3(

a51

M

(
i , j

ds
i
b ,s

j
a, ~2!

wheres i
a denotes thei th spin (i 51, . . . ,Nc /M ) of the ath

group (a51, . . . ,M ), s i
b denotes the i th spin

( i 51, . . . ,Nb) of the noise, ands i
a ,s i

b51, . . . ,q. The nor-
malization of the third term ensures that after summing o
the states of the background spins it ‘‘renormalizes’’ into
term proportional to the number of groupsM . without loss of
generality it will be assumed thatJ1;1. A schematic repre-
sentation of the model is shown in Fig. 2.

Since many of the difficult clustering problems are of e
tremely high dimensionality, a mean field setting of the ty
embodied by Eq.~2! is relevant to the problem. This formu
lation, however, does not include any disorder. By study
this model we hope to gain insight into the interplay betwe
the ordering process that occurs within the background s

FIG. 2. A schematic representation of the mean field model.M
dense groups of points are depicted at the top. A spin of groui
interacts with all other spins of his group with strength proportio
to J1. The dilute background is depicted at the bottom; its sp
interact with each other with strength proportional toJ2. In addi-
tion, each spin belonging to any of theM groups interacts with each
spin of the background, with strength proportional toJ3.
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and the ordering among the different clusters. In particu
we wish to study whether the relative ordering of two clu
ters is ‘‘driven’’ by an ordering transition of the backgroun
We will find that in a certain range of parameters there i
transition, at which the relative ordering of different cluste
increases abruptly and this occurs independently of the
dering process of the noise spins.

When the spins within a group are more or less ordere
spin within that group is subject to a total effective field
the order ofJ1. Similarly, when the background is ordered,
spin within it is subject to an effective field of the order
J2. Since we assume that the background is less dense
the groups, and because in the ‘‘real’’ problem~see Sec. IV!
the couplings between spins decrease exponentially with
interpoint distance, we assume from here on thatJ2!J1. For
the sake of completeness we considered the phase dia
with interactionsJ3 of any strength~relative toJ1 ,J2); to-
wards the end of this section we focus on the range ofJ3
relevant to the clustering problem.

In order to analyze the problem using mean field meth
@16,17# it was assumed thatNb ,Nc@M@1. The energy per
spin ~or more precisely, the total energy divided byNc) can
be expressed as

H
Nc

5E52
J1

2M(
a,a

maa
2 2

J2Nb

2Nc
(
a

mba
2

2ANb

M

J3

Nc
(
a,a

mbamaa , ~3!

while the entropy per spin, to leading order in 1/Nc,1/Nb , is
given by

S52
1

M(
a,a

maalnmaa2
Nb

Nc
(
a

mbalnmba . ~4!

maa is the fraction of spins in theath group with valuea,
andmba is the fraction of spins in the background with valu
a.

B. Order parameters and the free energy

Incorporating standard mean field assumptions~following
Wu @17#! we characterize the state of the system by th
order parameterss, t, and ŝ, where 0<s,t,ŝ<1. We as-
sume that within each group one Potts state~denoted bya)
is ‘‘occupied’’ by a fraction ma5m>1/q of the spins,
whereas the otherq21 states are equally occupied. Note th
a may vary from group to group. The variable

s5~m21/q!/~121/q! ~5!

measures the amount of order within a group, ranging fr
s50 whenm51/q to s51 for m51. Expressed in terms o
s, the different Potts states are occupied by fractions:

ma5
~q21!s11

q
, mgÞa5

12s

q
. ~6!

t is related similarly to the amount of order within the bac
ground. For each groupa we define a superspinŝa whose
r,
-

a

r-

a

an

he

am

s

e
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value is identical with the spin value of highest occupati
by the spins constituting that group. Thus for each groupa
the precise form of Eq.~6! is

mag5
12s

q
1sdŝa ,g . ~7!

Denote by m̂g the fraction of superspins with valueg,
m̂g5(1/M )(adŝa ,g . Again we assume that one Potts sta

~saya51) is ‘‘occupied’’ by a fractionm̂15m̂.1/q of the
superspins, whereas the otherq21 states are equally occu
pied. The variable

ŝ5~m̂21/q!/~121/q! ~8!

measures the relative order of theM superspins andŝ51
when all superspins are aligned. Using Eqs.~5!–~8! in Eqs.
~3! and ~4! we obtain the free energy per spin:

b f 52b
J1

2 S q21

q
s21

1

qD2b
J2Nb

2Nc
S q21

q
t21

1

qD
2b

AMNb

Nc
J3S q21

q
stŝ1

1

qD2S~s!2
Nb

Nc
S~ t !

2
M

Nc
S~ ŝ!, ~9!

where the entropy functionS is given by

S~s!52
11~q21!s

q
ln@11~q21!s#

2
~q21!~12s!

q
ln@12s#. ~10!

Hereb51/T is the inverse temperature~taking kB51). The
manner in which the nontrivial third term in Eq.~9! is ob-
tained is explained in Appendix A.

C. Phase diagram

The state of the system is found by minimizing the fr
energy~9! with respect tos, t and ŝ, which results in the
three stationarity equations:

q

q21

]b f

]s
52bJ1s2b

AMNb

Nc
J3t ŝ1 ln@11~q21!s#

2 ln@12s#50, ~11a!

q

q21

]b f

]t
52bJ2

Nb

Nc
t2b

AMNb

Nc
J3sŝ

1
Nb

Nc
$ ln@11~q21!t#2 ln@12t#%50,

~11b!
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q

q21

]b f

] ŝ
52b

AMNb

Nc
J3st1

M

Nc
$ ln@11~q21!ŝ#

2 ln@12 ŝ#%50. ~11c!

Inspection of these equations shows that if one of the o
parameters vanishes, at least one more must vanish as
Three possible phases are paramagnetic (s50,t50,ŝ50),
superparamagnetic (sÞ0,t50,ŝ50), ferromagnetic (sÞ0,t
Þ0,ŝÞ0). The fourth possible phase, where (s50,t
Þ0,ŝ50), is of no interest here since it occurs only f
J2.J1. We will find that in some regions of the space
couplings an additional transition line occurs within the fe
romagnetic phase, separating two subphases, one with s
t and one with larget.

In the next four subsections we calculate the location
nature of the phase transitions of the model. The phase
gram obtained is shown in Fig. 3 where each transition l
is labeled by a number corresponding to the subsectio
which it is discussed.

1. Paramagnetic to superparamagnetic transition

In the high temperature regime$T* 5@2~q21!
ln(q21)/(q22)]T@1% the free energy is minimized by th
disordered, paramagnetic solution of Eq.~11!, s5t5 ŝ50.
The transition to the superparamagnetic phase (sÞ0,
t5ŝ50) is found by demanding that the free energies of
two phases at the transition be equal. Writingf as f (s,t,ŝ),
where the explicit function is given by Eq.~9!, this condition
is written as

f ~s,0,0!5 f ~0,0,0!. ~12!

FIG. 3. Phase diagram of the model in the thermodynamic li
Nb /M→` with J151, J250.05 andq510, as a function ofJ3

andT* 5@2(q21)ln(q21)/(q22)#T. The number next to each tran
sition line denotes the subsection in which this transition is d
cussed. The location of the phase transition lines is only qualita
in the two regions that are close to the two triple points, but oth
wise is based on Eqs.~13!, ~19!, ~28!, and~31!. In the derivation of
these equations it was always assumed thatJ1 ,J2 ,J3 are not of the
same order.
er
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-
all
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Equations~11b! and ~11c! are satisfied, buts has to be a
solution of Eq.~11a!. These two equations,~11a! and ~12!,
are identical with those that locate the transition of the h
mogeneous mean field Potts model@17#. Their solution is
given by the ‘‘canonical’’ values for the inverse transitio
temperaturebps

bpsJ15
2~q21!

q22
ln~q21!, ~13!

and by the canonical value for the order parameter, wh
value at the transition is

sps5
q22

q21
. ~14!

The physical meaning of this phase is clear: each grou
ordered, but there is no ordering of the different ‘‘supe
spins’’ with respect to each other (ŝ50) and the background
spins are not ordered either (t50).

2. Superparamagnetic to ferromagnetic (A) transition

As the temperature is further lowered, a transition occu
at b f s , to a ferromagnetic phase withs,t,ŝÞ0. At the tran-
sition the state of the system changes abruptly from (s2,0,0)
to (s,t,ŝ). The values ofs2,s,t,ŝ, andb f s are found from
five equations. The first is the stationarity equation~11a! in
the superparamagnetic phase,

2b f sJ1s21 ln@11~q21!s2#2 ln@12s2#50 . ~15!

The next three are the stationarity equations~11a!–~11c!, in
the ferromagnetic phase; the fifth is the condition

f ~s2,0,0!5 f ~s,t,ŝ!. ~16!

In order to solve these five equations analytically we ma
two assumptions. The first, which is valid forJ2!J3, is that
the transition occurs well above the ordering transition of
background~see Sec. III C 4!; this assumption ensures that
the transition the background spins are nearly independen
each other. The second assumption, which is valid
J3!J1, is thatTs f51/b f s is well below the transition tem-
perature within the groupsTps ~discussed in Sec. III C 1!,
which ensures that at the transition 12s2!1 and
e[s2s2!1.

The physical interpretation of this ferromagnetic~A!
phase is as follows. If the background spins were not coup
to the M groups, there would have been no order in t
background, i.e.,t would have been zero. The backgroun
however, mediates an interaction between different sup
spins; this effective interaction causes relative ordering of
superspins~i.e., ŝÞ0), which, in turn, gives rise to an effec
tive ‘‘field’’ on the background spins causingtÞ0. The or-
dering transition due to the interaction between the ba
ground spins, irrespective of their coupling to the spins in
M groups, occurs at a lower temperature.

The details of the solution of the five equations are giv
in Appendix B. It turns out that the equation for the order
the background spinst,

it
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t5AM

Nb

bJ3s2ŝ

~q2bJ2!
, ~17!

is that of a system of Potts spins at a high temperature w
interaction J2 and subject to a field of strengt
AM /NbJ3s2ŝ. The equations for the order parameterŝ are
identical with those that locate the transition of a homo
neous mean field Potts model@17# with coupling constant
bJ5(bJ3s2)2/(q2bJ2). Note that the effective field acting
on the background spins in suppressed by a factor ofAM /Nb
with respect to the strength of coupling between the sup
spins.

The final results for the order parameters at the transi
are

ŝf s5
q22

q21
. ~18a!

t f s5A2~q22!

q~q21!
ln~q21!AM

Nb
, ~18b!

s2512e2c
J1

J3
, where c5A2q~q21!ln~q21!

q22
,

~18c!

s5s21e, where e5
2~q22!

~q21!
ln~q21!

M

Nc

3expS 2
cJ1

J3
D . ~18d!

The inverse transition temperature is given by

b f sJ3s25A2q~q21!ln~q21!

q22
. ~19!

The magnetization density of the background,mb and the
magnetization density of the spins of all groups,mc , are
simply related to the order parameters:

mc[K 1

Nc
(
i ,a

ds
i
a ,1L 5

q21

q
sŝ1

1

q
, ~20a!

mb[K 1

Nb
(

i
ds

i
b ,1L 5

q21

q
t1

1

q
. ~20b!

To see this add two infinitesimal fields in thea51 direction
~acting on the group and background spins!. It follows that
mc jumps atb f s from 1/q to mc'(q21)/q. On the other
hand, the increase in the value ofmb at b f s is, according to
Eq. ~18b!, of orderO(AM /Nb).

A noteworthy property of the transition is that despite t
fact that ordering of the background spins~with order param-
eter t) and ordering of the group superspins~with order pa-
rameterŝ) is due to the same interaction term@third term in
Eq. ~9!#, we find thatt f s! ŝf s . The reason is that assumin
that each group is roughly completely ordered, the total
teraction strength between a group superspin and a b
ground spin is (1/AMNb)J3. Since there areNb background
th

-

r-

n

-
k-

spins but onlyM superspins, the total effective field that
superspin is subject to isANb /MJ3 and is thus much large
than the total field that a background spin is subject
AM /NbJ3.

3. Paramagnetic to ferromagnetic (A) transition

It seems plausible that for large values of (AMNb/Nc)J3
the coupling between groups and background is so large
ordering within the groups necessarily imposes some o
in the background and, consequently, order among diffe
groups. In this case the intermediate superparamagn
phase does not occur, but rather a direct transition from
paramagnetic state~0,0,0! to the ferromagnetic~A! state
(s,t,ŝ) takes place. To find the transition temperature and
values ofs,t, andŝ at this transition one needs to solve E
~11! together with the condition

b f ~s,t,ŝ!5b f ~0,0,0!. ~21!

To solve these four equations we assume thatJ2!J1!J3,
implying again that the transition is well above the orderi
temperature of the background. Thus we assume thatt!1
and obtain from Eq.~11b!

t5AM

Nb

bJ3sŝ

~q2bJ2!
. ~22!

This result is basically the same as Eq.~17!. Substituting Eq.
~22! in Eq. ~11a!, and assuming thatŝ512d, we obtain to
zeroth order ind:

2bJ1s2
M

Nc

~bJ3!2

~q2bJ2!
s1 ln@11~q21!s#2 ln@12s#50.

~23!

ExpandingS(t) to second order int andS( ŝ) to zeroth order
in d, and using Eq.~22!, we obtain from Eq.~21!

q21

2q FbJ11
M

Nc

~bJ3!2

~q2bJ2!Gs22S~s!1
M

Nc
lnq50. ~24!

Neglecting now the last term in Eq.~24! ~of orderM /Nc),
Eqs. ~23!, ~24! are identical with the equations of the ‘‘ca
nonical’’ mean field Potts problem. Thus their solution
given by

bJ11
M

Nc

~bJ3!2

~q2bJ2!
5

2~q21!

q22
ln~q21!, ~25!

and by the canonical value fors

sp f5
q22

q21
. ~26!

usingAM /NcJ3 ,J2!1, we find from Eq.~25!, to zeroth or-
der in AM /NcJ3 ,J2, that the inverse transition temperatu
bp f is the same as that of the paramagnetic to superparam
netic transition, given by Eq.~13!.
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To find the self-consistent condition ford!1 we define
d[e2r and using Eqs.~22!, ~26! we find from the leading
terms of Eq.~11c! that

r5
~q22!2

~q21!2

~bJ3!2

~q2bJ2!
. ~27!

Since b5O(1), it follows that the condition ford!1 is
J3@1, which agrees with our assumptions.

4. Ordering transitions of the background spins; ferromagnetic
(B) phase.

To conclude the phase diagram we would like to kn
how ordering of the background spins comes about. First
turn to the caseJ3!J2. In this case one may retrace the ste
of Sec. III C 2 only this time assuming thatŝ!1. This as-
sumption is consistent forJ3 /J2!AM /Nb. One finds then
that the transition from the superparamagnetic state (s2,0,0)
to the ferromagnetic~B! state (s,t,ŝ) occurs at a temperatur
given by

bJ25
2~q21!

q22
ln~q21!, ~28!

and is characterized by a jump in the order parameter of
background to the value

t5
q22

q21
. ~29!

On the other handŝ changes only infinitesimally to the valu

ŝ5
2ln~q21!

q
ANb

M

J3

J2
. ~30!

Notice that this transition temperature and value oft are
those that would occur in the absence of the group spins

In the caseJ3@J2, ordering of the background spins
expected to occur at some temperature lower than that o
superparamagnetic – ferromagnetic~A! transition 1/b f s . In
the absence of the group spins we know that a first or
transition would occur at the inverse temperatureb given by
Eq. ~28!, which is much larger thanb f s . However, in the
ferromagnetic~A! phase, where the superspins of all grou
are ordered, the interaction with the groups’ spins acts a
strong effective ordering field on the background. Inde
according to Sec. III C 2 in the ferromagnetic~A! phases'1
and ŝ>(q22)/(q21). In fact, since the transition temper
ture given by Eq.~28! is much lower than 1/b f s , we may
safely assume thatŝ'1. Thus, to understand whether a tra
sition will occur, approximates and ŝ as constantss51 and
ŝ51. Accordingly, the free energy~9! becomes that of the
system of the background spins with interaction stren
J5J2 and external magnetic fieldh5AM /NbJ3. The prob-
lem is now reduced to the existence of a phase transition
mean field Potts system in an external field. Since withou
field the transition is first order, the transition can be d
stroyed only by a field of sufficient strength. Thus there i
e
s

e

he

er

s
a
,

h

a
a
-
a

line of a first order phase transition ending at a critical poi
The location of the critical point can be found exactly:

b f fJ54
q21

q
,

hc

J
5

@qln~q21!22~q22!#

4~q21!
. ~31!

Thus for fields below the critical valuehc the transition is not
destroyed, while above this value a transition does not ex
and the order parametert increases smoothly withb. The
condition for the occurrence of an ordering transition of t
background spins is thenAM /NbJ3 /J2<hc /J ~for example,
for q520, hc /J50.3011, . . . ). Note that this implies that if
M /Nb→0 then for any finiteJ3 andJ2 the critical field is not
reached. Thus, a first order transition exists for anyJ3, as is
depicted by the right hand side of the line marked as ‘‘4’’
Fig. 3. Note that this phase diagram was derived forM /Nb
→0; nonvanishing values ofM /Nb are discussed next. Th
critical point ~31! doesnot appear in this figure since fo
M /Nb→0 it is pushed toJ3→`.

To summarize our findings, we give in Fig. 3 the pha
diagram as a function ofJ3 and the temperatureT51/b for
q510, J250.05 and in the limitM /Nb→0. The phase dia-
gram is based on Eqs.~13!, ~19!, ~28!, and~31!. Since in our
calculations we have always assumed that the coupl
J1 ,J2 ,J3 are never of the same order, the location of t
phase transition lines is only qualitative in the vicinity of th
two triple points.

5. Which J3 is relevant to the clustering problem?

Now we wish to discuss what is the strength ofJ3 rel-
evant to the clustering problem. A main idea of our clust
ing method is that the coupling strength between two nei
boring spins decays monotonically with their distance. Wh
the spins of all groups are ordered, the resulting effect
field that a spin of the background is subject to is of ord
AM /NbJ3. In a realistic situation a density gradient exists
the interface between background and the denser group
near the interface a background spin has a closer distanc
a spin from a group than its distance to another backgro
spin. In addition, because of the density gradient, a ba
ground spin at the interface between the background an
group will have more neighbors belonging to the group th
neighbors belonging to the background. For these two r
sons we assumeAM /NbJ3.J2 so that the field exerted on
background spin by the spins of the groups is stronger t
the field exerted on it by the other background spins. Thus
the range of J3 relevant to the clustering problem
J3.ANb /MJ2, in contrast with the assumptionNb /M→`
made for drawing the phase diagram of Fig. 3. It follows th
the left hand side of the phase diagram of Fig. 3 is irrelev
to the clustering problem. In addition, in the region of inte
est one may haveAM /NbJ3 /J2.hc /J. In this case the tran-
sition discussed in Sec. III C 4 will not occur and the orde
ing of the background will not involve an abrupt transition

A phase diagram relevant to the clustering problem
drawn in Fig. 4. This phase diagram differs from that of F
3 sinceNb /M51000, in which case the critical point~31!
occurs at finiteJ3. The exact shape of the line connectin
this point to the triple point was not calculated.
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The analysis of the mean field model leads to the follo
ing conclusions. For a reasonable choice of the coupling c
stants there exists a superparamagnetic phase, characte
by ordering within groups, which can serve to identify t
groups as clusters. The paramagnetic to superparamag
transition is of first order~for q.2). At a lower temperature
a first order transition occurs to a ‘ferromagnetic’ pha
where ordering among different groups exists. This transit
is independent of the ordering transition of the backgrou
spins. It occurs when the background spins are just orde
enough to induce interaction of sufficient strength~see Sec.
III C 2! between the groups. This is important since it mea
that clusters that are relatively close can feel each other
higher temperature than that at which all points seem to
long to one cluster. It also means that the ordering is se
tive to the global structure of the point distribution. Last
depending on the strength of the effective field which
groups exert on the background spins, the background sp
transition to an ordered state is either of first order in nat
or occurs gradually.

D. Correlation functions

Of primary interest to us are the spin-spin correlati
functions. These can be calculated from the first derivati
of the free energy with respect toJ1 , J2 , and J3 yielding
~recall s i

b denotes a background spin!

^ds
i
a ,s

j
a&5

q21

q
s21

1

q
, ~32a!

^ds
i
b ,s

j
b&5

q21

q
t21

1

q
, ~32b!

^ds
i
a ,s

j
b&5

q21

q
stŝ1

1

q
. ~32c!

FIG. 4. Phase diagram of the model withNb /M51000,J151,
J250.05 and q510, as a function of J3 and T* 5

@2(q21)ln(q21)/(q22)#T. The number next to each transition lin
denotes the subsection in which this transition is discussed.
location of the phase transition lines is only qualitative in the t
regions which are close to the two triple points, but otherwise
based on Eqs.~13!, ~19!, ~28!, and~31!.
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In order to obtain the correlation between two spins b
longing to two different groups we add to the Hamiltonia
~2! an infinitesimal interaction of strengthJ4

H̃5H2
M

Nc
2

J4 (
a,a8

M

(
i , j

ds
i
a ,s

j
a8 . ~33!

Differentiating the free energy with respect toJ4 we find that
the correlation between spins belonging to different groupa
anda8 is given by

^ds
i
a ,s

j
a8&5

q21

q
s2ŝ21

1

q
. ~34!

Using the values we obtained fors, t and ŝ at the tran-
sition lines ~with J450) we find that the three phases a
characterized by their spin-spin correlations in the followi
way. In the paramagnetic phase

^ds
i
a ,s

j
a&5^ds

i
b ,s

j
b&5^ds

i
a ,s

j
b&5^ds

i
a ,s

j
a8&5

1

q
, ~35!

At the paramagnetic-superparamagnetic transition the
relation between spins belonging to the same group jum
abruptly while the correlation between other spins is u
changed. Hence in the superparamagnetic phase

^ds
i
a ,s

j
a&>

q21

q S q22

q21D 2

1
1

q
.12

2

q
1OS 1

q2D ,

~36a!

^ds
i
b ,s

j
b&5^ds

i
a ,s

j
b&5^ds

i
a ,s

j
a8&5

1

q
. ~36b!

The ‘‘ferromagnetic’’ phase is characterized by the fo
lowing correlations between neighboring spins@using ~18c!,
~18b!, and~18a!#:

^ds
i
a ,s

j
a&>

q21

q F122expS 2
cJ1

J3
D G1

1

q
.1, ~37a!

^ds
i
b ,s

j
b&.F2~q22!

q2
ln~q21!G M

Nb
1

1

q
, ~37b!

^ds
i
b ,s

j
a&.

~q22!

q
A2~q22!

q~q21!
ln~q21!AM

Nb
1

1

q
,

~37c!

^ds
i
a ,s

j
a8&.

~q22!2

q~q21!F122expS 2
cJ1

J3
D G1

1

q
. ~37d!

The significant change with respect to the superparamagn
phase is that spins belonging to different groups are n
correlated.

E. Susceptibility

The susceptibility of the system is calculated by addin
magnetic field term to the Hamiltonian:

he
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2hS (
a,i

ds
i
a ,11(

i
ds

i
b ,1D , ~38!

which results in an additional term of the free energy~9!:

2bhF S q21

q
sŝ1

1

qD1
Nb

Nc
S q21

q
t1

1

qD G . ~39!

The first term in Eq.~39! is obtained by using the definitio
of ma1, Eq. ~7!, the definition ofm̂1, and finally Eq.~8!.
Defining h̃5bh, the susceptibility per spin,x, is given by

x

b
52

d2b f

dh̃2
5

q21

q S ŝ
]s

] h̃
1s

] ŝ

] h̃
1

Nb

Nc

]t

] h̃
D . ~40!

In the paramagnetic phase the only contribution to
susceptibility is from the third term in Eq.~40!:

x

b
5

Nb

Nc

q21

q

1

~q2bJ2!
. ~41!

Note that in the paramagnetic phasex;O(1). At thetransi-
tion to the superparamagnetic phase there is a jump
value of orderx;O(Nc /M )

x

b
'

~q22!2

q2~q21!

Nc

M
. ~42!

At the ‘‘ferromagnetic’’ — superparamagnetic transition t
value of the susceptibility is only slightly higher than E
~42!:

x

b
'

q21

q2

Nc

M
. ~43!

In Fig. 5 we show the susceptibility Eq.~40! as a function of
the rescaled temperatureT* for a cross section of the phas
diagram of Fig. 4 atJ350.2236 and choosingNb5Nc5106.
The susceptibility was calculated by minimizing numerica
the free energy~9! to find s,t, andŝ, and differentiating Eq.
~11! with respect toh̃ to obtain]s/] h̃ , ]t/] h̃ and ] ŝ/] h̃ .
Starting from high temperature the transition to the sup
paramagnetic phase is marked in Fig. 5 by a discontinu
jump in the susceptibility. The transition to the ferromagne
phase is marked by a significant peak with a steep decr
on the lower temperature side, and the ordering transitio
the noise is marked by a minute peak. The susceptibilit
significantly different from zero only in the superparama
netic phase.

IV. DETAILS OF THE CLUSTERING METHOD

In this section we describe our method in detail and de
onstrate it on a toy problem. We also demonstrate the m
od’s insensitivity to various details and parameters.

a. Determination of the interactions Ji j . In common with
other ‘‘local methods,’’ we first determine a local leng
scale;a, which we chose to be equal to theaverage neares
neighbor distance. The value ofa is governed by the high
density regions and is smaller than the typical distance
e

a

r-
us
c
se

of
is
-

-
h-

e-

tween points in the low density regions. As will be show
later, our results depend only weakly on the definition
nearest neighbors. In the example of Fig. 1 we defined ne
bors as pairs of points whose Voronoi cells@18# have a com-
mon boundary. We set nearest neighbor interactions

Ji j 5Jji 5
1

K̂
expS 2

ixW i2xW j i2

2a2 D , ~44!

where K̂ is the average number of neighbors per site. T
main choice we have made is to setJi j to be a short range
interaction. As is well known, this determines the propert
of the system to a large extent and with little dependence
the details of the interaction. The effect of changing the
teraction type is considered in Sec. IV A.

b. Calculation of thermodynamic quantities.The ordering
properties of the system are reflected by the susceptib
and the spin-spin correlation function^dsi ,sj

& ~where^•••&
denotes a thermal average!. Once theJi j have been deter
mined, these quantities can be obtained by a Monte C
~MC! procedure. We used the Swendsen-Wang~SW! algo-
rithm @19#, which is a nonlocal method. This is necessa
since in the superparamagnetic phase local MC dynam
could lead to accidental correlations between different d
clusters; flipping a large aligned cluster will take a very lo
time. In SW dynamics whole clusters, roughly correspond
to the ‘‘true’’ data clusters, are flipped in one time step
that such accidental correlations do not occur. The S
method exhibits much smaller autocorrelation times@19#
than standard methods and also provides an improved
mator @20# of the spin-spin correlation function:

^dsi ,sj
&5

~q21!^ni j &11

q
. ~45!

FIG. 5. The susceptibility divided byb as a function of the
rescaled temperatureT* 5@2(q21)ln(q21)/(q22)#T at a cross sec-
tion of the phase diagram of Fig. 4 withJ350.2236,Nb5Nc5106

and other parameters as in Fig. 4. The very tiny peak atT* '0.065
corresponds to the transition from ferromagnetic~B! to ~A! phases;
the large peak to the transition to the superparamagnetic phase
drop atT* 51 signals the transition to the paramagnetic phase.



u
u

ua
ilit
g-
r

-
g
m
o
r
th
u

ve
a

xi-
in

io
re

at

t
n

e

ea
lu

to

ac-

to

at

ro-

ong
nal
ith
lus-
ere

s
of
of
nser

re-
ity
the

101
or

he
ter-

to
A
is
ture
r-
igh
noi

s
uch

vs

3776 57SHAI WISEMAN, MARCELO BLATT, AND EYTAN DOMANY
Here^ni j & is the probability thatsi andsj belong to the same
SW cluster.

c. Locating the superparamagnetic phase.One would like
to measure a single quantity as a function of the temperat
which would signal changes in the clustering solution. O
choice is to measure the susceptibilityx of the system, which
is proportional to the variance of the magnetizationm:

x5
N

T
~^m2&2^m&2!, m5

~Nmax/N!q21

q21
. ~46!

HereNmax5max$N1 ,N2 , . . . ,Nq% andNm is the number of
spins with the valuem.

At low temperatures all spins are aligned and the fluct
tions of the magnetization are negligible, so the susceptib
x is small. At Tf s , the pseudotransition from the ferroma
netic phase to the superparamagnetic phase, we obse
~see Fig. 6! a pronounced peak ofx. In the superparamag
netic phase fluctuations of the superspins or clusters actin
a whole result in a nearly constant susceptibility. As the te
perature is further raised toTps , the superparamagnetic t
paramagnetic transition,x abruptly diminishes by a facto
that is roughly the volume of the largest cluster. Thus
temperatures where a maximum of the susceptibility occ
and the temperature at whichx decreases abruptly can ser
as lower and upper bounds, respectively, for the superp
magnetic phase. A surprisingly good initial estimate forTps
is found by the following considerations. First we appro
mate the clusters by an ordered lattice of coord
ation number K̂ and a constant interactionJ'^Ji j &
'(1/K̂)exp~2^ixi2xj i&2/2a2)5(1/K̂)exp(2 1

2). We assume
that independently of the lattice type and its coordinat
numberK̂, JK̂/Tc5const. For the Potts model on the squa
lattice @17# it is known exactly that const54 ln(11Aq). It
follows that the transition should occur roughly

Test'e2
1
2 /4ln(11Aq). Our definition ofJi j thus ensures tha

Test does not depend onK̂. An estimate based on the mea
field model yields a very similar value.

d. The clustering procedure.Our method consists of two
main steps. First we identify the range of temperatures wh
the clusters appear~the superparamagnetic phase!. Secondly,
at some temperature within this range the correlation of n
est neighbor spins is measured and used to identify the c
ters. The procedure is summarized as follows:

~a! Assign to each pointxW i a q-state Potts spin variablesi
~here we choseq520).

FIG. 6. The susceptibility density of the data set of Fig. 1
temperature.
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~b! Find the nearest neighbors of each point according
a selected criterion~e.g., Voronoi tessellation@18#!; measure
the average nearest-neighbor distancea.

~c! Calculate the strength of the nearest neighbor inter
tions using Eq.~44!.

~d! Use an efficient Monte Carlo procedure@19# with the
Hamiltonian~1! to calculate the susceptibilityx.

~e! Identify the range of temperatures corresponding
the superparamagnetic phase, betweenTf s , the temperature
of maximal x, and the~higher! temperatureTps where x
diminishes abruptly. Cluster assignment is performed
Tclus5(Tf s1Tps)/2.

~f! Measure atT5Tclus the spin-spin correlation function

^dsi ,sj
& for all pairs of neighboring pointsxW i andxW j .

~g! Clusters are identified according to a thresholding p
cedure. If^dsi ,sj

&.u, pointsxW i ,xW j are defined as ‘‘friends.’’
Then all mutual friends~including friends of friends, etc.! are
assigned to the same cluster. We choseu50.5.

~h! In cases where all data points are expected to bel
to a certain macroscopic cluster, we introduced an additio
step. In this step each point is linked to the neighbor w
which it has the highest correlation. This step expands c
ters to their periphery, which is usually less dense and wh
consequently spin-spin correlation may be smaller thanu.
This step was not used in the example of Fig. 1.

e. The toy problemof Fig. 1 contains three dense region
of 2729, 1356, and 1084 points on a dilute background
831 points. The points are uniformly distributed in each
the regions, but the three dense regions are ten times de
than the background. Going through steps~a! to ~d! we ob-
tained the susceptibility as a function of temperature as p
sented in Fig. 6. Note the similarity to the susceptibil
curve of the mean field model in Fig. 5. Figure 1 presents
clusters obtained atTclus50.075 using steps~f! and~g!. The
sizes of the three largest clusters are 2771, 1386, and 1
and the background decomposed into clusters of size 3
smaller. We now discuss the effect of different details of t
method such as the definition of neighbors, the type of in
action, the clustering temperature and the thresholdu. Dis-
cussion of the effect of the number of Potts states,q, is
postponed to Sec. V B.

A. Independence of or dependence on choice of parameters

Definition of neighbors

Since the data do not form a regular lattice, one has
supply some reasonable definition for ‘‘neighbors.’’
Voronoi cell structure is an appealing choice since it
strictly geometric and has no parameters. Such a struc
has been argued@21# to have intuitively appealing characte
istics over other graph structures in data clustering. In h
dimensions, however, the computational cost of the Voro
tessellation is too high. Therefore, in dimensionsD.3, we
used theK mutual neighbors criterion. We say thatv i andv j
have a mutual neighborhood valueK if and only if v i is one
of the K nearest neighbors ofv j and v j is one of theK
nearest neighbors ofv i . Only points with mutual neighbor-
hood valueK are allowed to interact. In cases whereK is
small or the dimensionD is high, the resulting interaction
do not span all the points to one connected graph. In s
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cases we superimposed on the edges obtained with this
terion the edges of the minimal spanning tree~MST! associ-
ated with the data points.

We tested the clustering procedure with the data se
Fig. 1 using several nearest-neighbor definition. These
clude Voronoi tessellation, theK mutual neighbors criteria
with K512, 14, and 18 andK56 mutual neighbors with a
superimposed minimal spanning tree. The resulting ac
average number of nearest neighborsK̂ and the average
neighbor distancea are given in the first and second colum
of Table I. These two quantities reflect rather large diff
ences in the properties of these nearest neighbor gra
However, the important features of the clustering solut
obtained by the clustering procedure did not change sig
cantly.

In Fig. 7 we show the susceptibility curves correspond
to the data of Fig. 1, which were obtained with the differe
nearest neighbor definitions. We note that all curves
qualitatively identical and exhibit the same main featur
with the only difference being the temperature scale.

In columns 3–6 of Table I we give the sizes of the fo
largest clusters, obtained at a temperature midway betw
the two transition temperatures that bound the superparam
netic phase. We note that the differences are rather sma

B. Dependence or independence on the form of the interaction

Possibilities for the dependence of the interaction stren
Ji j on the distancedi j 5ixW i2xW j i , other than Eq.~44!, were
also considered. For instance, a power law interaction~for
neighbors only! such as

TABLE I. Comparison between different nearest neighb

graphs.K̂ is the actual average number of neighbors per site.a is
the average nearest neighbor distance. For each nearest nei
graph cluster sizes were always taken at a temperature mid
between the two transitions that bound the superparamag
phase.

Nearest neighbor Bottom Top Middle Nex
graph K̂ a cluster cluster cluster cluste

‘‘True clusters’’ 2729 1356 1084
K518 14.33 0.0287 2753 1373 1090 1
Voronoi cells 5.99 0.0254 2771 1386 1101 3
K514 10.87 0.0252 2756 1372 1091 1
K512 9.14 0.0233 2761 1379 1093 6
K561MST 4.04 0.0163 2759 1374 1101 8

FIG. 7. The susceptibility densityxT/N of the data set of Fig. 1
as a function of the temperature for different definitions of nea
neighbors.
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Ji j 5
1

K̂

a

di j
~47!

is appealing since it does not impose any characteri
length scale~the constanta can be absorbed into the tem
perature!. Another short range type of interaction that w
tested was

Ji j 5
1

K̂
expS 2

di j

a D . ~48!

The susceptibility densityxT/N of the data set of Fig. 1 as
function of the temperature for different types of interactio
Ji j as in Eqs.~44!, ~47!, and~48! is shown in Fig. 8.

The two susceptibility curves corresponding to the sh
range interactions are rather similar, differing only in t
temperature scale. The susceptibility of the interaction
type ~47! exhibits a small extra peak atT'0.27 and decays
at the transition to the paramagnetic phase at a slower
than the susceptibility curves of the short range interactio

C. Sensitivity to changing the interaction range

It is instructive to consider the effect of varying the inte
action range, i.e., altering the interactionJi j of Eq. ~44!,
replacinga by f a. The interaction range is decreased~in-
creased! by decreasing~increasing! f , while f 51 corre-
sponds to the original choice of settinga equal to the average
nearest neighbor distance. In Fig. 9 we show the suscept
ity densityxT/N of the data set of Fig. 1 as a function of th

temperature forf 5 1
2 ,1,2. By decreasing the interactio

range by a factor of 2~i.e., usingf 50.5) the ferromagnetic

r

bor
ay
tic

st

FIG. 8. The susceptibility densityxT/N of the data set of Fig. 1
as a function of the temperature for different types of interactio
Ji j , as in Eqs.~44!, ~47!, and~48!. Here the Voronoi cell neighbor
definition andq510 were used.

FIG. 9. The susceptibility densityxT/N of the data set of Fig. 1
as a function of the temperature for different values off .
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phase, where most spins belong to a single cluster, pr
cally disappears, but the other, more important, feature
the clustering solution are unchanged. On the other h
dramatic changes in the clustering solution occur when
interaction rangea is increased by a factor of 2 (f 52). In
this case the superparamagnetic phase almost disappea
the results are compatible with the existence of only o
cluster. This occurs since interaction between spins in
dilute background region is not suppressed sufficiently w
compared to the interaction between spins in the high den
regions. We note that such a problem can occur with r
data even when using our original choice~i.e., f 51!. This
can happen if the number of points in the dilute backgrou
regions is too large compared to the number of points in
high density regions. In this case the value ofa will be
governed by dilute regions and can be too high, thus
allowing the clustering solution to be sensitive to the ex
tence of the dense regions. Thus in such cases it would
useful to choosef ,1.

D. Sensitivity to the clustering temperature

In Fig. 10 we show the sizes of the five largest clust
obtained as a function of temperature, usingq520, Voronoi
tessellation, and the interaction of Eq.~44!. We see that in
the superparamagnetic phase the number of macrosc
clusters and their sizes are stable with respect to chang
temperature. The sizes of the three largest clusters in
temperature range 0.052,T,0.096 differ at most by 2%
from the cluster sizes obtained at the clustering tempera
Tclus50.075.

E. Sensitivity to the spin-spin correlation thresholdu

Classification is not sensitive to the value of the thresh
u, and values in the range 0.2,u,0.9 yielded similar re-
sults. The reason is that the frequency distribution of
values of the spin-spin correlation function exhibits tw
peaks, one near 1/q and the other close to 1, while for inte
mediate values it is very close to zero as is shown in F
11~b!.

V. PHYSICAL INTERPRETATION OF THE METHOD

In this section we use heuristic arguments and exp
ments with artificial data to consider how our method wo
for non-mean-field situations. In Secs. V A and V B we co
sider what we expect to happen in regions with a unifo
density of points, neglecting the effect of interaction betwe

FIG. 10. Sizes of the five largest clusters obtained as a func
of temperature, usingq520, Voronoi tessellation, and interactio
~44!.
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neighboring regions with different densities, which is cons
ered in Sec. V C.

A. Significance ofj, the correlation length of the fluctuations
for the clustering solution

1. The clustering criterion

Consider a local region where the typical distance
tween neighboring points isd, at a temperatureT. The ef-
fective local neighboring spins’ couplingK local'Ji j (d)/T
sets a local~dimensionless! correlation length of the fluctua
tions, j. The number of spins whose fluctuations are cor
lated is then roughlyjD. Starting at the high temperatur
phase, as the temperature is decreased,j increases. Whenj
reaches a canonical valuejc , a transition occurs and th
region transforms into an ordered state. Thus we could
that the spins of a region are classified as forming a clu
when the temperature is such that the region of spins wh
fluctuations are correlated extends over a canonical num
of spinsjc

D . Denser regions have a stronger effective lo
couplingK local and therefore reach the canonical valuejc at
a higher temperature.

2. Relevant known properties
of the Potts model correlation length

The correlation length near the transition,jc , is strongly
dependent onq and the trend is that at the transitionjc is
smaller for largerq. It is known @17# that the transition~for
ordered lattices! is first order forq.4 in two dimensions and
for q.2 andD>4, while it is second order forq<4 in two
dimensions andq52 in D>4. For example, in two dimen
sions forq<4, jc(q)5`, for q510 it is estimated@22,12#
asjc(10)'10.6,jc(15)'4.2, jc(20)'2.7. In Ref.@12# it is
also shown numerically that in two dimensions at the tran
tion the correlation length in the ordered phase is equa
that of the disordered phase.

The disorder present in our systems plays, of course
important role. Work on two-dimensional Poissonian rand
lattices of Voronoi-Delaunay type~but constant interaction
strength! shows@23# that the transition~for q58) maintains
its first order nature. On the other hand, in ordered squ
lattices with quenched bond~strength! randomness it was
predicted@24# and found numerically@25# that the transition
becomes second order.

n
FIG. 11. Frequency distribution of~a! distances between neigh

boring points of Fig. 1~scaled by the average distancea) and ~b!
spin-spin correlation functions of neighboring points.
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3. Length scale of density estimation and the correlation lengt

As we pointed out, the superparamagnetic cluster
~SPC! method is similar to a density estimation metho
More precisely, at each temperature each region is clust
only if its density is above the clustering density thresho
In any density estimation there is a length scalel e , that
determines the scale on which the density is averaged. D
sity fluctuations on scales smaller thanl e are attenuated in
height on the one hand but their range of influence increa
to l e on the other hand. Density fluctuations on scales lar
than l e will be modified only at their periphery. One usual
refers tol e as setting the resolution of the density estimatio
Note thatl e is a parameter of the density estimation meth
and is not directly related to any cluster size, which is
property of the point distribution. In the SPC method, t
correlation lengthj is a length scale characteristic of th
thermodynamic behavior of the Potts spin system. It is
characteristic length scale over which spins fluctuate i
coherent manner relatively to their average state. It se
plausible that for the SPC method, at any temperat
l e;jd ~we choosel e to have units of length!. To substantiate
this, we show now that the role ofl e in a density estimation
procedure is similar to the one played byj in our clustering
method.

For example, consider a region that is in the disorde
phase at a temperature slightly above its ordering temp
ture. The average density of points is only slightly below t
clustering density threshold corresponding to that temp
ture, so that most neighboring points are not assigned to
same cluster. Suppose that at some local region~smaller than
l e) the density is sufficiently higher than the clustering de
sity threshold, such that points at the local region are
signed to the same cluster. This should happen if the den
of the surrounding region is only slightly below the cluste
ing threshold and the attenuated estimated local densit
above threshold. Since density is averaged on a scale ol e ,
we would expect this cluster to be larger for largerl e . In-
deed, in the SPC method a region of higher density acts
pinning center for a fluctuation of higher spin order~relative
to the surrounding disordered region!, causing neighboring
spins to be classified to the same cluster. This cluster wil
larger for larger correlation lengthj.

On the other hand consider a region that is in the orde
phase at a temperature slightly below its ordering temp
ture. The average density of points is such that most ne
boring points are classified to the same cluster. Suppose
at some local region~smaller thanl e) the density is suffi-
ciently lower and points next to this place should not
assigned to the same cluster. We would expect the ‘‘nonc
tered’’ region to be larger for largerl e . Indeed, a region of
lower density should act as a pinning center for spin ori
tation fluctuations relative to the dominant spin orientation
the ordered phase region, causing neighboring spins not t
classified to any large cluster. The ‘‘nonclustered’’ regi
will be larger for larger correlation lengthj. Hence we con-
clude thatj is indeed proportional tol e , as stated above. W
describe below some results of tests where the effec
changingj was studied by changing the Potts parameterq.

4. Resolution and errors in cluster boundaries

Suppose that according to our clustering solution a clu
has a certain boundary between it and the surrounding n
g
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spins. We say that the accuracy of the clustering solutio
high if its boundary successfully matches an equidensity
of the ‘‘true’’ density profile. One reason for deviations o
the boundary from such a line can be due to the existenc
fine features in the underlying ‘‘true’’ density profile such
spatially complicated cluster boundaries or large density g
dients. To overcome such features a small density estima
length scalel e ~high resolution! is beneficial. On the othe
hand, if l e is too small~the resolution is too high!, the exis-
tence of random local density fluctuations~due to the finite
number of the data point! can also lead to errors in the clust
boundary.

Note that the spins within a cluster boundary are in
ordered state while those outside the cluster boundary ar
the disordered state. Thus at the boundaryj'jc so that the
density estimation length scalel e at the boundary of the clus
ter is determined byjc .

B. q dependence of the spatial resolution
of the clustering solution

Here we summarize some qualitative features of the
sults of several experiments with artificial data, which we
meant to examine the effect of changingq. The most basic
finding can be summarized as follows: In a region that is
a disordered phase slightly above its ordering temperat
the clusters are smaller for largerq. Conversely, at a tem
perature slightly below ordering, the clusters are larger
largerq. Since we know thatjc is smaller for largerq, this
finding suggests that the correlation lengthj is indeed related
to l e .

For example, just below the ferromagnetic to superpa
magnetic transition the single large cluster is smaller
smallerq, while just above the transition the largest cluste
are larger for smallerq. Similarly, just below the superpara
magnetic to paramagnetic transition the macroscopic clus
are smaller for smallerq, while just above the transition th
largest clusters are larger for smallerq. Related to these
characteristics of the cluster sizes at the two transiti
bounding the superparamagnetic phase is the fact tha
higher q the decrease in cluster sizes, as the temperatu
raised, is smaller. On the other hand, another related fea
is that for higherq the temperature range of the superpa
magnetic phase becomes smaller. For example, in one
periment~data not shown! the existence of four dense group
was difficult to detect because the density in the region
tween groups was just 0.8 of the density within groups. T

FIG. 12. The scaled susceptibility density@q2/(q21)# Tx/N of
the point distribution of Fig. 1 as a function of the temperature
several values ofq.
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temperature range where four clusters could be detected
reduced to one point forq520 but was larger forq510 and
even larger forq56.

In Fig. 12 we show the scaled susceptibility dens
@q2/(q21)# Tx/N of the point distribution of Fig. 1 as a
function of the temperature for several values ofq. The fac-
tor q2/(q21) ensures that the scaled susceptibility has
same value for allq in the high temperature limit. It is evi
dent that the transition at the high temperature side, wh
the dense clusters transform from a disordered to an ord
state, becomes sharper for increasingq. That is, the increase
in x at the transition is larger for largerq. This is consistent
with the negative monotonic dependence ofjc on q in or-
dered lattices noted above. Just above the transition a la
correlation length implies fluctuations of larger extent on
disordered background, resulting in a larger susceptibi
Just below the transition a larger correlation length impl
fluctuations of larger extent on the background of the orde
clusters. Since the susceptibility in this phase is due to
size of the ordered clusters, this results in a smaller sus
tibility. This analysis is relevant only in the immediate vicin
ity of the transition. For example, forq55 atT50.1600 the
scaled susceptibility is 0.051, while forq520 atT50.1075
the scaled susceptibility is 0.096. Here we compared for b
values ofq the highest temperature where yet three la
clusters are observed. The same effect is the source o
fact that the ferromagnetic to superparamagnetic transitio
sharper for higherq. In the superparamagnetic phase itse
where fluctuations in the size of the three large clusters
not play an important role, the system can be approxima
as that of three noninteracting superspins of sizesN1 ,N2 ,N3.
Indeed, by using Eq.~46! and the sizes of the three large
clusters, a reasonable approximation of the susceptibilit
obtained, confirming that the susceptibility is smaller f
higher q. The reason is that for higherq the dominating
configuration, where the three superspins point in differ
directions, is more dominant whereby fluctuations in t
magnetization are suppressed.

1. q dependence of the effect of density fluctuations

In another experiment a two-dimensional point distrib
tion with a single group shaped as a cone@P(u) uniform,
and P(r )56r (12r )# was used. We compared the cluste
obtained with differentq at temperatures where the numb
of points in the largest cluster was equal. We found that
other clusters were larger for smallerq. In addition, the larg-
est cluster was compared to the corresponding ‘‘central c

FIG. 13. The entropy densityS/Nc of the mean field model of
Sec. III as a function of the temperatureT with same parameters a
in Fig. 5 for different values of the Potts variableq.
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ter,’’ a circular cluster whose radius around the center of
distribution (r 50) is such that it includes the same of num
ber of points. This was done with 2000 points,K510, at a
temperature where there were 995 points in the largest c
ter. Forq55, 136 points of the largest cluster did not ove
lap with the ‘‘central cluster,’’ while forq520 only 116
points did not overlap with the ‘‘central cluster.’’

2. q dependence of the definiteness of the clustering solution

Connected to the question of the spatial resolution of
clustering solution is the question of how definite is the clu
tering solution. Recall that our final clustering solution
based on averages of spin-spin correlations taken from
probability distributionof states. Thus the clustering solutio
is more definite if the probability distribution is narrower, o
if the entropy~which is the missing information about th
state of the system! is smaller.

In Fig. 13 we show the entropy@see Eqs.~9! and~10!# of
the mean field Potts model with the same parameters a
Fig. 5, as a function of temperature forq55,10,20. A dis-
continuity in the entropy at a higher temperature correspo
to the paramagnetic to superparamagnetic transition and
lower temperature to the ordering transition of the no
spins. The largerq is the larger are these discontinuitie
Thus the largerq is the more significant is the reduction i
the entropy associated with the ordering within clusters. T
makes the clustering solution of the superparamagnetic p
more definite for higherq. This is in contrast to naive intu
ition that higherq will result in a higher entropy and a les
definite answer.

C. On the effect of density differences

Here we focus on the effect of interactions between
gions of different densities which was completely neglec
in Sec. V A. We also consider here how the clustering so
tion changes as the thermodynamic limit is approached
when the number of sampled points increases.

To this end consider the following information processi
toy problem, which is a finite-dimensional analog of th
mean field model described in Sec. III. We have two re
tively distinct species, horses and donkeys, and a third in
mediate and less distinct species, mules. All points that c
respond to horses and donkeys fall within tw
hyperrectangular regions of dimensionD, whose side in the
first dimension is of lengthW, and all the other sides are o
lengthL. The two rectangles are a distancedinter apart in the
first dimension, and contain points of equal uniform dens
rh . All the mules fall within the hyperrectangle of lengt
dinter in the first dimension and lengthL in all other dimen-
sions, between the two hyperrectangles of the horses
donkeys~see Fig. 14!. The density of points within this rect
angle is lower,r l , wherer l,rh . As more and more animal
are sampledrh and r l increase but their ratior r5rh /r l is
fixed, sincer r is set by the relative homogeneity of the sp
cies. The corresponding typical nearest neighbor distan
aredh,l5rh,l

21/D for the high and low density regions, respe
tively.

Neglecting the interactions with the mules, we expect,
discussed in Sec. V A, that the two denser regions will or
at a temperatureTh

c , when their local effective coupling is
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approximately equal to a canonical constant,J(dh)/Th
c'Kc .

Deviations from this relation will occur mostly because
the finite size effect due to the finite number of points with
each region. The interaction with the mules has a neglig
effect since the coupling within the mules,J(dl) is exponen-
tially smaller thanJ(dh) @see Eq.~44!#.

Following the same logic one would expect the same
happen within the mules’ region at a temperatureTl

c, independent

where J(dl)/Tl
c, independent'Kc . BecauseJ(dl) is exponen-

tially smaller thanJ(dh), Tl
c, independent!Th

c . However, at tem-
peraturesT, T,Th

c , each of the two denser regions are o
dered and act on the mules’ region as two strong surf
fields, each pointing in some time dependent direction.
claim that these surface fields act so as to increase the
perature at which the mules’ region orders so t
Tl

c.Tl
c, independent.

First we claim that the two surface fields tend to
aligned. To see this, assume that the mules region i
Tl

c, independent, with free boundary conditions. Next add th
two adjacent ordered dense regions acting as orde
boundary fields pointing in a time dependent direction~the
ordered dense regions could also be viewed as two additi
ghost spins interacting with the boundary spins of the mu
region!. Then consider the two possible macroscopic sta
A ‘‘parallel state’’ where the two boundary fields point in th
same direction, and an ‘‘antiparallel state’’ where the tw
boundary fields point in different directions. The differen
between the free energies of the antiparallel stateFap and
free energy of the parallel stateFp can be written as

Fap2Fp;const3LD212T ln~q21!. ~49!

The first term is the energy cost of an additional surface
unsatisfied bonds. This is a macroscopic term, proportio
to the cross section of the mules’ regionLD21. The second
term reflects the entropic gain of having the boundary fie
point in different directions. Since there are only two fiel
this term is not macroscopic. Thus it is clear that
Tl

c, independent, energy wins and the ‘‘parallel’’ state has lowe
free energy.

Next we claim that the ‘‘parallel’’ state favors an ordere
state of the mules’ region and that therefore atTl

c, independent

the mules’ region is ordered. By definition of a first ord
transition, without boundary fields the free energy of t
bulk ordered state and of the bulk disordered state
Tl

c, independentare equal,Fo5Fd . But with the boundary fields
in the ‘‘parallel state’’ the free energy of the bulk disorder

FIG. 14. A schematic three-dimensional demonstration of
information processing toy problem. Points corresponding to ho
fall within the rectangle on the left. Points corresponding to d
keys fall within the rectangle on the right. Points corresponding
mules fall between the two rectangles.
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state increases because of the surface tension betwee
ordered and the disordered state,so,d . Thus
Fd,p'Fd12so,dLD21. On the other hand,Fo,p'Fo . Thus
due to the boundary fieldsFo,p,Fd,p , the bulk ordered state
is favored and the mules’ region will become disordered o
at a higher temperatureTl

c.Tl
c, independent.

Does this picture hold as we increase the total numbe
pointsN ? First, it may be shown that neglecting the effect
the boundaries of the different regions on the value ofa we
have

a5
2Wrr

121/D1dinter

2Wrr1dinter
dl5

2Wrr1dinterr r
1/D

2Wrr1dinter
dh . ~50!

Since W,r r ,D, and dinter are independent ofN, the ratios
dh /a and dl /a and, consequently, the couplingsJ(dh) and
J(dl), are independent ofN. Accordingly, the dependence o
the temperaturesTh

c andTl
c, independenton N is only a finite size

effect, decaying asN→`.
As to the true transition temperature of the mules regi

the main thing to note is that asN→` the number of spins
across the first dimension,dinter/dl→` as well. For a given
N as the temperature is decreased, the range of influencR,
of the boundary ‘‘fields,’’ induced by the neighboring hors
and donkey regions, increases. This range determines the
evant dimensionless correlation lengthj5R/dl . The transi-
tion will occur at a temperatureTl

c wherej(Tl
c);dinter/dl .

Since j monotonically increases asT decreases, asN in-
creasesTl

c must decrease. However, as we have notedTl
c is

bound from below byTl
c, independent.

To verify these expectations we have performed sev
experiments with a two-dimensional sample with three p
allel rectangles ten times denser than the sparse backgr
surrounding them. The experiments were repeated with
ferent number of pointsN5500, 2000, and 8000. We foun
that asN increased, the paramagnetic to superparamagn
transition temperature changed very little, while the fer
magnetic to superparamagnetic transition temperature
creased as expected.

Regarding the manner of the approach ofTl
c to

Tl
c, independentas N→`, we note a related study of thef6

theory with disordering boundary conditions by Sornette@26#
who found thatTl

c, independent2Tl
c;1/l for l @jc . Here jc is

the correlation length at the transition without bounda
fields, and in our casel 5dinter/dl .

To summarize, we find that asN increasesTl
c decreases

while Th
c hardly varies, so that the extent of the superpa

magnetic phase increases. This can be regarded as a sig
our method only improves as more points are sampled.

VI. SUMMARY

We have shown that the thermodynamic collective beh
ior of inhomogeneous Potts models can serve as an exce
indicator for the existence of collective structures in data. W
have analyzed in detail a mean field model of granular P
magnets representing an idealized data clustering prob
The main finding was that with a reasonable choice of
coupling constants a superparamagnetic phase exists th
characterized by ordering within groups. In this phase
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spin-spin correlation function can serve to identify the ma
netic grains as clusters. At a lower temperature, when
background spins are just ordered enough to induce inte
tion of sufficient strength between the groups, a transition
a ferromagnetic~A! phase occurs, where ordering among d
ferent groups exists.

We have demonstrated the method on a two-dimensio
pedagogical data set showing that it exhibits a thermo
namic behavior similar to that of the mean field model. T
method’s performance on complicated real life data exhi
ing a complicated hierarchical structure of clusters was
ported in @11#. A comparison to other nonparametric tec
niques clearly indicated@11# the relative success of ou
method. We have shown that the method is robust in
sense that it is not sensitive to many of its details. It is
sensitive to the interactionsJi j , as long as they decrease wi
the distancedi j , in a broad sense: It is not sensitive to t
definition of neighbors. It is somewhat important though th
the interaction be of short range type. The results are
very sensitive to the interaction rangea as long as it is not
too long. It was also shown that the thermodynamics of
Potts model imposed on the data imply a robustness of
clustering solution. The clustering solution is not chang
substantially by changing the clustering temperature as l
as it is within the same superparamagnetic phase. In addi
because at any temperature neighboring spins are e
highly correlated~in their ordered phase! or uncorrelated~in
their disordered phase!, the clustering solution is insensitiv
to the spin-spin correlation thresholdu.

We have discussed the connection between the correla
length of the fluctuations and the resolution of the cluster
solution or the density estimation length scale. In relat
with this connection we demonstrated several aspects o
Potts parameterq. The first is that the spatial resolution o
the clustering solution is higher (l e is smaller! for higherq.
A higher q increases the definiteness of the clustering so
tion in two senses. The first is the one discussed in S
V B 2. The second is that changes in the clustering solu
as a function of temperature become more abrupt while
clustering solutions themselves in the superparamagn
phase exhibit less variation. The tradeoff is that when
true clusters are difficult to detect, with higherq they might
not be detected since the temperature range where the s
paramagnetic phase exists becomes smaller. Finally, in
V C the effect of interactions between regions of differe
densities was considered and the existence of the super
magnetic phase as more data points are sampled was sh
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APPENDIX A: ON OBTAINING THE FREE ENERGY
OF THE MEAN FIELD MODEL

Here we illustrate the manner in which the nontrivial thi
term in Eq.~9! is obtained. The starting point is the ener
term in Eq.~3! due to the interaction of the background spi
with spins belonging to groups:
-
e
c-
o
-

al
-

e
t-
-

e
t

t
ot

e
e

d
g
n,
er

on
g
n
he

-
c.
n
e

tic
e

er-
ec.
t
ra-
wn.

he

I 5(
a,g

mbgmag . ~A1!

By using Eq. ~7!, the definitionm̂g5(1/M )(adŝa ,g , and

summing overa, we obtain

(
a

mag5
M ~12s!

q
1s(

a
dŝa ,g5

M ~12s!

q
1Msm̂g .

~A2!

Since by definition(gmbg51, we obtain

I 5
M ~12s!

q
1Ms(

g51

q

mbgm̂g . ~A3!

Thus the order within groupss sets the strength of couplin
between the background spins and the superspins. This
special property of this mean field model. Next, using

m̂15
~q21!ŝ11

q
, m̂gÞ15

12 ŝ

q
, ~A4!

and a similar relation betweenmbg and the background orde
parametert in Eq. ~A3!, one obtains

I 5M S 1

q
1

q21

q
stŝD . ~A5!

APPENDIX B: SUPERPARAMAGNETIC TO
FERROMAGNETIC TRANSITION

This Appendix includes details of the mean field equ
tions solution of the superparamagnetic to ferromagnetic~A!
transition given in Sec. III C 2. As pointed out in Sec. III C
the starting point of the solution is Eqs.~15!, ~11a!–~11c!,
and ~16!. It is assumed that at the transition 12s2!1 and
e[s2s2!1.

To first order ine we obtain by subtracting Eq.~15! from
Eq. ~11a!

q

11~q22!s22~q21!~s2!2
2bJ15b

AMNb

Nc
J3

t ŝ

e
.

~B1!

Using Eq.~B1!, to second order ine, Eq. ~16! becomes

~q21!

2q
b

AMNb

Nc
J3t ŝe1

Nb

Nc
F2

bJ2

2

~q21!

q
t22S~ t !G

2b
AMNb

Nc
J3

~q21!

q
tŝ~s21e!2

M

Nc
S~ ŝ!50. ~B2!

Next we assume thate!t!1, so that to first order int we
obtain from Eq.~11b! equation~17!.

Substituting Eq.~17! in Eq. ~11c! we obtain

2
M

Nc

~bJ3s2!2

~q2bJ2!
ŝ1

M

Nc
$ ln@11~q21!ŝ#2 ln@12 ŝ#%50.

~B3!
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ExpandingS(t) to second order int, neglecting terms pro-
portional tob(AMNb/Nc)J3t ŝe, and using Eq.~17! we ob-
tain from Eq.~B2!

2
q21

2q

M

Nc

~bJ3s2!2

~q2bJ2!
ŝ22

M

Nc
S~ ŝ!50. ~B4!

Equations~B3! and ~B4! are identical with those of the ho
mogeneous mean field Potts model@17# with order parameter
ŝ and with coupling constantbJ5(bJ3s2)2/(q2bJ2).
Their solution is thus given by the ‘‘canonical’’ solution@see
Eq. ~13!# for the inverse transition temperatureb f s

~b f sJ3s2!2

~q2b f sJ2!
5

2~q21!

q22
ln~q21!, ~B5!

and by the canonical value for the order parameter value@see
Eq. ~14!# in the ferromagnetic phase at the transition, E
~18a!.

By assumingb f sJ2!1 Eq. ~B5! simplifies to Eq.~19!,
which defines the transition temperature. Sinces25O(1),
the assumptionb f sJ2!1 is justified in the regime where
J3@J2. Physically, in this regime the transition to the ferr
magnetic phase occurs at a much higher temperature tha
e

,

n

.

the

usual transition temperature of the noise had it not been
contact with the groups. Using Eqs.~19! and~B5! in Eq. ~17!
we obtain Eq.~18b!. Note that sinceNb@M , the jump int at
the transition is infinitesimal and the assumptiont!1 is jus-
tified.

To find s2 and e we assume thatJ3!1, which through
Eq. ~19! implies thatb f s@1. Thus our assumption is that th
superparamagnetic to ferromagnetic transition occurs a
much lower temperature than the paramagnetic to superp
magnetic transition@see Eq.~13!#. Therefore we expect the
value ofs2 to be very close to 1. Using Eq.~19!, writing s2

as s2512d, and assumingd!1, we find from the two
leading terms of Eq.~15! that

lnd52c
J1

J3
, where c5A2q~q21!ln~q21!

q22
.

~B6!

Thus the assumptiond!1 is self-consistent and Eq.~18c! is
obtained. Inserting Eq.~19! and Eq.~18a! in Eq. ~B1!, to first
order in d, we obtain by usingd!ANb /NcJ3, Eq. ~18d!.
This small value fore justifies all the neglections of term
with e made above.
c-

-
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