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Superparamagnetic clustering of data
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The physical aspects of a recently introduced method for data clustering are considered in detail. This
method is based on an inhomogeneous Potts model; no assumption concerning the underlying distribution of
the data is made. A Potts spin is assigned to each data point and short range interactions between neighboring
points are introduced. Spin-spin correlatidnseasured by Monte Carlo computatiprserve to partition the
data points into clusters. In this paper we examine the effects of varying different details of the method such
as the definition of neighbors, the type of interaction, and the number of Pottsctéteaddition, we present
and solve a granular mean field Potts model relevant to the clustering method. The model consists of strongly
coupled groups of spins coupled to noise spins, which are themselves weakly coupled. The phase diagram is
computed by solving analytically the model in various limits. Our main result is that in the range of parameters
of interest the existence of the superparamagnetic phase is independent of the ordering process of the noise
spins. Next we use the known properties of regular and inhomogeneous Potts models in finite dimensions to
discuss the performance of the clustering method. In particular, the spatial resolution of the clustering method
is argued to be connected to the correlation length of spin fluctuations. The behavior of the method, as more
and more data points are sampled, is also investiga8i063-651%98)05803-4

PACS numbgs): 02.50.Rj, 05.70.Fh, 89.786¢c

I. A PEDESTRIAN'S INTRODUCTION want to divide the iris flower population into species. Our
TO CLUSTERING expedition collects a large sample of iris flowdpatterns.
For each floweD properties are measured, such as the sepal
The compelling connections between information theorylength and width, the petal length and width, etc. The values
and statistical physics have given rise to a fruitful exchangebtained for thath flower determine the “location” of the
of ideas between the two disciplines. It is no wonder themyoint x; . If we chose to measure relevant properties, differ-
that ideas and tools of statistical mechanics can prove vergnt regions of points in thB-dimensional space will corre-
useful in solving difficult problems in information process- spond to different species of iris. The goal of clustering is to
ing. In this work we represent the problem of data clusteringjequce from the distribution of the points, without aay
as that of finding the probable states of an inhomogeneoysriori knowledge about the iris flowers population, which

Potts model. By solving the_ physics of this Potts model Wenoints (or flowers constitute a species and how many spe-
are able to give good solutions to the data clustering probgjes are there.

review of the data clustering field and the problematics intyo pointsis a decreasing function of their mutual distance.
herent to many of the methods that were used to solve therhis assumption is problematic when the scales of the dif-
problem. ferent dimensions are not simply relateth order to imple-

Clustering is an important technique in exploratory analy-ment definitionl though, one needs a way to measure the
sis of information or data. Since information analysis iSsimiIarity between more than two points, which may consti-
needed in a large variety of engineering and scientific probyyte g cluster. In other words, the question is how to define a
lems, it is no wonder that clustering is used in diverse fieldsproper “many body” similarity measure.
such as pattern recogniti¢f], learning[2], astrophysic$3], One possible definition of a measure for the similarity
computer vision, biology, and more. The goal of data cluspetween points belonging to a cluster is based on the as-
tering is to divide the data according to natural classegymption that the center of mass of the cluster’s points is a
present in it. More formally the problem can be stated asyfficient representativeof the cluster(and all its points
follows: ) The extent to which a point is correctly assigned to the clus-

Giveni=1,2, ... N patterns, represented as poirtin a ter is then a function of its distance from the cluster repre-
D-dimensional metric spacén some cases only the dis- sentative. This is an example for a general approach known
tances between all pairs of points are giyesetermine the as theparametricclustering approach. The idea is to describe
partition of theseN points intoM groups, calledclusters  the clusters’ structure by some parameters and use these to
defined such that the definition of clusters is as follows: measure the similarity of a point to a cluster. This results in
points that belong to the same cluster are more similar toa cost function that usually needs to be minimized in order to
each other than to points in different clusteMote that the find the optimal clustering solution and its corresponding
value of M also has to be determined by the clustering pro-parameters. Typical examples of this approachdatermin-
cedure. istic annealing[4] and maximum likelihood5]. In recent

As a typical example of the use of clustering, suppose wgears some parametric clustering algorithms, rooted in statis-
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tical physics, were presentfdi-6]. For example, the method collective behavior. The collective behavior is expressed in
of Rose, Gurevitch, and Fd¥] can be interpreted as a non- the fact that many spins are found with high probability in
interactingg-state Potts system subjectddong-range field the same state. Interpreting this as a sign of similarity, it is
sources located at the clusters’ centers. natural to view the spin-spin correlation function as a simi-
The main drawback of this approach is that a certairlarity measure. In contrast with the interpoint distance used
structure of the clusters is assunedg., each cluster can be N many methods as a similarity measure, the spin-spin cor-
represented by a center and a spread aroundlie result is relatlon function is an mhergntly grouplllke property and is
that some structure, which is assumed either correctly or ininfluenced by the state of spins of a region of sfZe(where
correctly, is imposed on the data. If the assumption is faf IS the correlation lengh The use of the Potts model for
from the truth it can lead to erroneous and misleading resultg® clustering task is particularly appealing since its physics
Thus, when there is na priori knowledge about the data €20 be completely understood in terms of geometrobas-
structure, it is more natural to adoponparametriccluster- ~ (€rS[9)- _ _ _
ing methods, which are motivated by a local version of defi- N the present worka brief account of which was first
nition | the definition 11 of clusters is as follow&he points ~Presented ifi10) we advocate the use of an inhomogeneous
that constitute a cluster reside in a connected region of OttS model for solving the nonparametric clustering prob-
space, in which the density of points is relatively high. Twg€M- A detailed comparison with the performance of other
clusters are separated by a region in which the density of€chniques, which was reported[il], clearly indicates the
points is relatively low [7].It is clear that if severaheigh- relative success of our method. Here we d_well on the phys_l-
boring points are similar or close to each other then theyc@l @spects of our method. In Sec. Il we give a formal justi-
form a region of higher density, while several neighboringf'cat'on to our approach, outline @he me;hod and explain .how
points, which are all relatively far from each other, form a it works. In .Sec. Il we analyze in dgtall a Potts mean field
region of lower density. In this sense definition Il follows Model that is relevant to the clustering problem. In Sec. IV
from applying definition Ilocally. Indeed, nonparametric W€ describe our me_thod in detail, its dependence an_d/or in-
clustering methods uséocal criteria to decide whether dependence on various parameters, and show how it works
neighboring points belong to the same cluster. The overaff" @ t0y problem. In Sec. V we use heuristic physical argu-
structure emerges then from the transitive nature of definients and various known properties of Potts models to con-
tion I1, where clusters are defined as connected regions. Thiider how our method works for more realistic point distri-
is in accord with the transitivity inherent to sets. If poiat ~ °utions, which cannot be approximated by mean field. The
and pointB belong to the same cluster, and poiBtand C effect of interactions between neighboring regions with dif-

belong to the same cluster thénand C must belong to the ferent densities of points is also considered, together with the
same cluster. validity of our approach in a relevant thermodynamic limit.

The second definition seems at first sight a straightfor-The paper is summarized in Sec. VI.

ward working definition; all one needs to do is to construct a

contour map of the density and declare the highlands abovell. STATISTICAL MECHANICS OF NONPARAMETRIC

some height as clusters. Conceptually this is an appropriate CLASSIFICATION

v of e sente of nr paremetic csterng. UGh a1 Tho goal i o e “best” classicaio fra given
. X o . * Bistribution of data points. A classificatids} is defined by

practice the task is extremely difficult since the common case . - ,

is that points are often distributed sparsely and irregularly if:SSIgning to each poing; a labels; that may take integer

a high-dimensional space. These difficulties render gridluessi=1,...q. We define a cost functiof([{s}],
based and basis functions based methods inappropriate. In-

stead, many nonparametric clustering methdi8,7] have H[{s}]=— 2 Jijds s S=1,...4, (1
been suggested and used, all of which are inherently based (i) v

only on the points themselves. Some of these methods are . . . ) .
hierarchical[1] and recursively apply nonlocal similarity Where(i.j) stands for a pair of poinisand], andJ;; is some
measures suitable for particular cluster shapes. Some algB9sitive monotonically decreasing function of the distance,
rithms originate from graph theorji] and utilize a graph [[xi—X;||, so that the closer two points are to each other, the
structure where the data points are vertices connected byore they “like” to belong to the same class. This cost
edges of a graph. After removing the “inconsistent” edgesfunction is the Hamiltonian of an inhomogeneous ferromag-
of the graph according to some local criterion, the clustergietic Potts modgl12]. Note thatg doesnotrestrict the num-
are defined as the connected components of the graph. Tiwer of clusters.
basic flaw of these methods is that the decision to remove an We want to select a good classification using nothing but
edge depends only on the distance between the two pointsH[{s}]. Taking the usual path in information thedrg], we
connects. This is in contradiction to the grouplike spirit of choose the probability distribution that has the most missing
definition I. Thus, applying a similarity measure that main-information(entropy and yet has some fixed average dést
tains the grouplike spirit of definition 1, yields clustering that The resulting probability distribution is that of a Potts system
is stable in the presence of noise, and is appropriate for difat equilibrium at inverse temperatur@, which is the
ferent cluster shapes and constitutes, is the crux of the nor-agrange multiplier determining the average energy or cost
parametric clustering approach. E. Similarly to the fuzzy clustering approa¢h4], the an-
Spin systems are a classic example of many body systenssver is given in terms of a probability distribution of classi-
where local two body interactions give rise to grouplike orfications and not in terms of one good classificatide do,



57 SUPERPARAMAGNETIC CLUSTERING OF DATA 3769

@ ® @@

FIG. 2. A schematic representation of the mean field madel.
dense groups of points are depicted at the top. A spin of group
interacts with all other spins of his group with strength proportional
to J;. The dilute background is depicted at the bottom; its spins
interact with each other with strength proportionaldto In addi-
tion, each spin belonging to any of th groups interacts with each
spin of the background, with strength proportionalto

° s

R ; ”* ° * > k phase transition marks a sharp change in the clustering solu-

FIG. 1. The classified data set. Points classifiaglith tion as a function of the temperature.

Tqus=0.075 andd=0.5) as belonging to the three largest clusters
are marked by crosses, triangles, ang. Single point clusters are
denoted by squares.

Ill. A MANY-CLUSTER POTTS MEAN FIELD MODEL
WITH NOISE

A. Motivation and definition of the model

however, use this probability distribution, or more specifi- In some clustering problems several dense groups of
cally spin-spin correlations, to propose a definite clustering.points are separated from each other by a sparse background
Because the cost functiqil) is symmetric with respect to a (or noisg. In some other typical cases the core of a group is
global permutation of all labels, each point is equally likely denser than the region adjacent to its perimeter; conse-
to belong to any one of thg classes. Therefore the only way duently, it may be very difficult to differentiate the region

to extract meaningful informatiofor to assign clusteyout ~ adjacent to the perimeter from noise. Thus the two classes of
of the equilibrium probability distribution is through correla- Problems are effectively similar. We try to mimic this situa-
tions. The average spin-spin correlation functidy ) (the tion by the following Potts systenti) N, points are divided
probability that points andj belong to the same clasis into M groups.(ii) Pointswithin the same group interact with

thus used to decide whether or not two spins belong to th teraction s.treng_th M/NC.)‘]l' (iii) Ny points constitute a
same cluster. ackground; the interaction between two such points is of

As a concrete demonstration of the manner in which theStrength (mb)‘JZ' (v) Every point that belongs to a group
clustering answer depends on the temperature, place a Poﬁgeracts with every po_mt of the backgroqnd \.N'th an interac-
spin at each of the data points of Fig. 1. Here the dimensioﬂOn of strength (M) VM/NpJ3. The Hamiltonian of such a
is D=2 and the number of data pointshs=6000. This is a otts system Is
simple example intended for a pedagogical presentation of MM 1
the prc_)blen_L The _example is not trivial since oyhgr met.hods H=——32, > Sya ya— =3, 8,0 4
[15] fail on it. At high temperatures the system is in a disor- Ne “a=1 i< Np =5 77
dered(paramagneticphase. As the temperature is lowered a

M
transition to a super-paramagnetic phaseccurs; spins _ i MJ E 2 Sb a @)
within the same high density region become completely N b SE 7 0
aligned, while different regions remain uncorrelated. As the _ )
temperature is further lowered, the effective coupling beWhereof denotes theth spin (=1, ... N./M) of the ath
tween the three clustefinduced via the dilute background group @=1,... M), of denotes the ith spin
sping increases, until they become aligned. Even though thi§i =1, ... Ny) of the noise, and?,0?=1, ... g. The nor-

is a pseudotransitiofnote the finite number of participating malization of the third term ensures that after summing over
clusters and the transition temperature of the background ighe states of the background spins it “renormalizes” into a
much lower, we call this “phase” of aligned clusters ferro- term proportional to the number of groulk without loss of
magnetic. generality it will be assumed thdt~1. A schematic repre-

In order to support this qualitative picture we analyze insentation of the model is shown in Fig. 2.
the next section a relevant mean field Potts model. The Since many of the difficult clustering problems are of ex-
analysis serves to examine systematically the nature of thieemely high dimensionality, a mean field setting of the type
possible phases and phase transitions that could arise in coembodied by Eq(2) is relevant to the problem. This formu-
nection with the clustering problem. This is important sincelation, however, does not include any disorder. By studying
each phase is a stablaith respect to small temperature this model we hope to gain insight into the interplay between
variations solution of the clustering problem, while each the ordering process that occurs within the background spins
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and the ordering among the different clusters. In particularyalue is identical with the spin value of highest occupation
we wish to study whether the relative ordering of two clus-by the spins constituting that group. Thus for each graup
ters is “driven” by an ordering transition of the background. the precise form of Eq(6) is
We will find that in a certain range of parameters there is a
transition, at which the relative ordering of different clusters 1-s
increases abruptly and this occurs independently of the or- Ma,=——+86;_ . )
dering process of the noise spins. q

When the spins within a group are more or less ordered, a .
spin within that group is subject to a total effective field of Denote bym, the fraction of superspins with value,
the order of],. Similarly, when the background is ordered, arhyz(llM)Eaég,a'y. Again we assume that one Potts state
spin within it is subject to an effective field of the order of
J,. Since we assume that the background is less dense th
the groups, and because in the “real” problésee Sec. IY
the couplings between spins decrease exponentially with t
interpoint distance, we assume from here on fhatJ,. For .~
the sake of completeness we considered the phase diagram s=(m—1/q)/(1-1/q) (8)
with interactionsJ; of any strength(relative toJq,J,); to-
wards the end of this section we focus on the rangd0f measures the relative order of thé superspins ané=1
relevant to the clustering problem. when all superspins are aligned. Using EG8—(8) in Egs.

In order to analyze the problem using mean field method$3) and (4) we obtain the free energy per spin:
[16,17] it was assumed thafl, ,N.>M>1. The energy per

saya=1) is “occupied” by a fractionm;=m>1/q of the
Uperspins, whereas the otler 1 states are equally occu-
h%ied. The variable

Egir;g;rrgzgzrscisely, the total energy divided Ry) can st ﬁ‘]l(q_l . 1) Jsz(q—1t2+ 1
= — —| ———8 —_ — —_— —_
2\ ¢ q 2N: | q q
H 3 , dNpo
 —F=— —— — VMN -1 . N
N, E- oM M 2NC§ Moo - bag(qq sts+ o —S(s)—N—bS(t)
Cc Cc
Np J3 M.
~ VN2 Moo @ - 556, ©

while the entropy per spin, to leading order iltN31/1/N,, is where the entropy functios is given by

given by
1 N 1+(g—1)s
S=— = MMy, — 2>, M nmy,.  (4) S(s)=————In[1+(q—1)s]
Mz Nc“a
m,,, is the fraction of spins in thath group with valueq, — wm[l_s]_ (10)

andm,,, is the fraction of spins in the background with value
.
Here 8= 1/T is the inverse temperatufeakingkg=1). The
B. Order parameters and the free energy manner in which the nontrivial third term in E) is ob-

. i . ) tained is explained in Appendix A.
Incorporating standard mean field assumptifolowing

Wu [17]) we characterize the state of the system by three
order parameters, t, and s, where O<s,t,s<1. We as-
sume that within each group one Potts si@enoted byw) The state of the system is found by minimizing the free
is “occupied” by a fraction m,=m=1/q of the spins, energy(9) with respect tos, t and s, which results in the
whereas the other— 1 states are equally occupied. Note thatthree stationarity equations:

a may vary from group to group. The variable

C. Phase diagram

q Jpf VMN, .
s=(m-1/q)/(1-1/q) 5 71 e = BIS— B JststIn[1+(q—1)s]
q—1 Js N

measures the amount of order within a group, ranging from —In[1-5]=0, (113
s=0 whenm=1/q to s=1 for m=1. Expressed in terms of
s, the different Potts states are occupied by fractions: q Bt ; th \/M_NbJ )

(q—1)s+1 1-s g1 ot~ Pyt AN Jsss

ma:Ti my#a:T- (6)

N
+—2{In[1+(g—1)t]—In[1—t]}=0,
t is related similarly to the amount of order within the back- Nc

ground. For each group we define a superspiar, whose (11b
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10.00 Equations(11b) and (11¢ are satisfied, bus has to be a
solution of Eq.(119. These two equationg11a and (12),
Paramagneti are identical with thpse that locate the tran_sition o_f thg ho-
mogeneous mean field Potts modé&l]. Their solution is
100 1 3 given by the “canonical” values for the inverse transition
' temperatures ;¢
d 2 2(q-1)
Superparamagnetic Bps*]lzq_—z In(q -1), (13
Ferromagnetic (A)
0.10 | —
4 4 and by the canonical value for the order parameter, whose
value at the transition is
Ferromagnetic (B) (ordered noise)
‘ ‘ a2 14)
0% o3 0.10 1.00 10.00 Sps g-1’ (

3
The physical meaning of this phase is clear: each group is

FIG. 3. Phase diagram of the model in the thermodynamic limitordered, but there is no ordering of the different “super-

Np/M—o0 with J;=1, J,=0.05 andg=10, as a function ofl; PP -
. - T - _ spins” with respect to each othes{ 0) and the background
andT* =[2(q—1)In(q—1)/(g—2)]T. The number next to each tran spins are not ordered eithet=0).

sition line denotes the subsection in which this transition is dis-
cussed. The location of the phase transition lines is only qualitative

in the two regions that are close to the two triple points, but other- 2. Superparamagnetic to ferromagnetic (A) transition

wise is based on Eq$13), (19), (28), and(32). In the derivation of As the temperature is further lowered, a transition occurs,
these equations it was always assumed dhal,,J; are notof the 4t g, to a ferromagnetic phase witht,s#0. At the tran-
same order. sition the state of the system changes abruptly frem,0)

to (s,t,s). The values of~,s,t,s, and B¢ are found from

q pf VMNy M Inf 1 13 five equations. The first is the stationarity equati@ag in
a-1 g5 —h N, Jast+ N_c{ n(1+(g=1)s] the superparamagnetic phase,
—In[l—%]}=0. (119 —Bisd1S” +IN[1+(g—1)s  |—-In[1-s"]=0. (15

. . . he next three are the stationarity equati¢ghsa—(11c), in
Inspection of these equations shows that if one of the orde}'-?e ferromagnetic phase; the fifth is the condition

parameters vanishes, at least one more must vanish as we
Three possible phases areAparamagnestFeq,tzlo,s=O), f(s~,0,0)=f(s,t,5). (16)
superparamagnetics¢ 0,t=0,5=0), ferromagnetic §# 0t
#05#0). The fourth possible phase, wheres=(0t In order to solve these five equations analytically we make
#0,5=0), is of no interest here since it occurs only for tWo assumptions. The first, which is valid fa§<Js, is that
J,>J,. We will find that in some regions of the space of the transition occurs well above the ordering transition of the
couplings an additional transition line occurs within the fer-backgroundsee Sec. Iil C % this assumption ensures that at
romagnetic phase, separating two subphases, one with smiMe transition the background spins are nearly independent of
t and one with large. each other. The second assumption, which is valid for
In the next four subsections we calculate the location and3<J1. is thatT¢¢=1/8 is well below the transition tem-
nature of the phase transitions of the model. The phase di@erature within the group$ s (discussed in Sec. Il C)1
gram obtained is shown in Fig. 3 where each transition lingvhich ensures that at the ftransiion—$ <1 and
is labeled by a number corresponding to the subsection ig=s—s <1.

which it is discussed. The physical interpretation of this ferromagneti8)
phase is as follows. If the background spins were not coupled
1. Paramagnetic to superparamagnetic transition to the M groups, there would have been no order in the

background, i.e.t would have been zero. The background,
however, mediates an interaction between different super-
spins; this effective interaction causes relative ordering of the

In the high temperature regime{T*=[2(q—1)
In(q—1)/(q—2)]T>1} the free energy is minimized by the

disordered, paramagnetic solution of E41), s=t=s=0. superspingi.e., s#0), which, in turn, gives rise to an effec-

Th? transition to the superparamagnetic phase-Q tive “field” on the background spins causirtgc 0. The or-

t=s=0) is found by demanding that the free energies of thejering transition due to the interaction between the back-

two phases at the transition be equal. Writings f(s,t,s), ground spins, irrespective of their coupling to the spins in the

where the explicit function is given by E(P), this condition M groups, occurs at a lower temperature.

is written as The details of the solution of the five equations are given
in Appendix B. It turns out that the equation for the order of

f(s,0,00=1(0,0,0). (120  the background spints
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M /3335_§ spins but onlyM superspins, the total effective field that a
t= No(q= 35" (170 superspin is subject to igN,/MJ; and is thus much larger
b(d—pJ2

than the total field that a background spin is subject to,

is that of a system of Potts spins at a high temperature with M/NpJs.

interaction J, and subject
JYM/NpJzs~s. The equations for the order parameseare

identical with those that locate the transition of a homoge-
neous mean field Potts modgl7] with coupling constant

to a field of strength

3. Paramagnetic to ferromagnetic (A) transition

It seems plausible that for large values qf\{N,/N¢)J3
the coupling between groups and background is so large that

BI=(BJIss7)?%(q— BJ,). Note that the effective field acting ordering within the groups necessarily imposes some order

on the background spins in suppressed by a factaf\ofN,,

with respect to the strength of coupling between the supergroups.

in the background and, consequently, order among different
In this case the intermediate superparamagnetic
phase does not occur, but rather a direct transition from the

The final results for the order parameters at the transitiofparamagnetic stat€0,0,0 to the ferromagnetidA) state

spins.
are
~ Qgq—-2
st:q—_l' (18a
29-2) /
ts= 09— 1)l( 1) (18b)

s‘=1—e‘°ﬂ,

B \/ZQ(q—l)ln(q—l)
where c= )

N q—2
(189
-5 here e= 2972 g1
s=s +¢€, Where e= a-1) n(q— )NC
cJy
><exp( — —) (180
J3
The inverse transition temperature is given by
_ 2q(q—1)In(q—1)
Bisdas = \/ q-2 : (19

The magnetization density of the backgroung,and the
magnetization density of the spins of all groups,, are
simply related to the order parameters:

E<—C§ f‘~>:q%1§5+é' (208

1 qg-1 1
My <Nb2i 8y ,1> gy (20b)
To see this add two infinitesimal fields in the=1 direction
(acting on the group and background spirs follows that
m. jumps atB;s from 1/g to m,~(q—1)/q. On the other
hand, the increase in the valuemof, at B; is, according to
Eq. (18b), of orderO(yM/Ny).

A noteworthy property of the transition is that despite the

fact that ordering of the background spim&th order param-
etert) and ordering of the group superspifvgith order pa-

rameters) is due to the same interaction tefthird term in

(s,t,s) takes place. To find the transition temperature and the

values ofs,t, ands at this transition one needs to solve Eqg.

(11) together with the condition
Bf(s,t,8)=p(0,0,0). (22)

To solve these four equations we assume thatJ;<<Js,

implying again that the transition is well above the ordering

temperature of the background. Thus we assume ttsat
and obtain from Eq(11b)

o M BJsss
Np(q—pBJ2)°
This result is basically the same as Etj7). Substituting Eq.

(22) in Eq. (119, and assuming that=1— 8, we obtain to
zeroth order iné:

(22

M (BJ 3)2

TBhSTN (9= B3y

s+In[1+(q—1)s]—In[1—s]=0.

(23

ExpandingS(t) to second order i andS(é) to zeroth order
in 8, and using Eq(22), we obtain from Eq(21)

q-1 M (BJ3)? M

- B+ — s2—S(s)+ —Ing=0. (24

20 |PPIN (g-pay)° 09T RT3
Neglecting now the last term in ER4) (of orderM/N,),

Egs. (23), (24) are identical with the equations of the “ca

nonical” mean field Potts problem. Thus their solution is

given by

M (BJ3)? 2(q—1)
Ji+ — = In(q—1), 25
PN G-y gz MO
and by the canonical value far
g—2
Spf:q_—l. (26)

Eqg. (9)], we find thattfs<§fs. The reason is that assuming using VM/N.J3,J,<1, we find from Eq.(25), to zeroth or-
that each group is roughly completely ordered, the total inder in yM/N.J3,J,, that the inverse transition temperature
teraction strength between a group superspin and a bacig,; is the same as that of the paramagnetic to superparamag-

ground spin is (WYMNy)Js. Since there ar&l,, background

netic transition, given by Eq13).
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To find the self-consistent condition f@<1 we define line of a first order phase transition ending at a critical point.
é=e ? and using Egs(22), (26) we find from the leading The location of the critical point can be found exactly:
terms of Eq.(110 that

(@27 (83)?
P -2 @=B3)

q-1 he [ain(g—1)—2(q—2)]
IBffJ:4Tu 3= 29-1) . (3D

(27)

Since B=0(1), it follows that the condition fors<1 is Thus for fields below the critical value, the transition is not
J;>1, which agrees with our assumptions. destroyed, while above this value a transition does not exist,

and the order parametérincreases smoothly witl8. The
4. Ordering transitions of the background spins; ferromagnetic ~ condition for the occurrence of an ordering transition of the
(B) phase. background spins is the{M/NpJs/J,<h./J (for example,

. . for g=20,h./J=0.3011 .. .). Note that this implies that if
To conclude the phase diagram we would like to I(nOWM/Nb—>O then for any finitel; andJ, the critical field is not

how ordering of the background spins comes about. First we

. reached. Thus, a first order transition exists for dgyas is
turn to the casd;<<J,. In this case one mayAretrace the stepsdepicted by the right hand side of the line marked as “4” in
of Sec. Il C 2 only this time assuming that1. This as-

Fig. 3. Note that this phase diagram was derivedNoiN,
sumption is consistent fal;/J;<yM/N,. One finds then  _,0: nonvanishing values d#1/Ny, are discussed next. The
that the transition from the superparamagnetic stateQ,0)  critical point (31) doesnot appear in this figure since for
to the ferromagneti¢B) state 6,t,s) occurs at a temperature M/N,—0 it is pushed tQl;—c°.

given by To summarize our findings, we give in Fig. 3 the phase
diagram as a function aof; and the temperaturé=1/8 for
2(q—-1) q=10, J,=0.05 and in the limitM/N,—0. The phase dia-
BI2= q-2 In(q—1), (28) gram is based on Eq6L3), (19), (28), and(31). Since in our

calculations we have always assumed that the couplings
and is characterized by a jump in the order parameter of théi1,J2,J3 are never of the same order, the location of the
background to the value phase transition lines is only qualitative in the vicinity of the
two triple points.

o
|
N

t= : (29 5. Which J; is relevant to the clustering problem?

o]
|
[EnN

R Now we wish to discuss what is the strengthJaf rel-
On the other hand changes only infinitesimally to the value evant to the clustering problem. A main idea of our cluster-
ing method is that the coupling strength between two neigh-
~ 2In(g—1) [NpJs boring spins decays monotonically with their distance. When
s= T VJ—z B0 the spins of all groups are ordered, the resulting effective
field that a spin of the background is subject to is of order

Notice that this transition temperature and valuetadre ~ VM/NyJs. In a realistic situation a density gradient exists at
those that would occur in the absence of the group spins. the mterfgce between background and the denser groups, so
In the casel;>J,, ordering of the background spins is N€ar the interface a background spin has a closer distance to
expected to occur at some temperature lower than that of tH& SPin from a group than its distance to another background
superparamagnetic — ferromagnetd transition 15. In spin. In a(_JIdltlon, b(_ecause of the density gradient, a back-
the absence of the group spins we know that a first ordeground spin at the |nterface between the background and a
transition would occur at the inverse temperatdrgiven by ~ 9roup will have more neighbors belonging to the group than
Eq. (28), which is much larger tha;.. However, in the neighbors belonging to the background. _For these two rea-
ferromagnetiqA) phase, where the superspins of all groupsSONS We assumeM/NyJ3>J, so that the field exerted on a
are ordered, the interaction with the groups’ spins acts as 8ackground spin by the spins of the groups is stronger than
strong effective ordering field on the background. Indeed}he field exerted on it by the other backgrouncj spins. Thus, in
according to Sec. Il C 2 in the ferromagneti) phases~1  theé range of J; relevant to the clustering problem,
ands=(q—2)/(q—1). In fact, since the transition tempera- J3> VNb/MJZ'.'n contrast W'th the assur_nptldnb/M—wo
ture given by Eq.(28) is much lower than B;,, we may made for drawing the phase diagram of Fig. 3. It follows that

N the left hand side of the phase diagram of Fig. 3 is irrelevant
safely assume that~1. Thus, to understand whether a tran-, yhe clustering problem. In addition, in the region of inter-

§|t|on will occur, approximats ands as constants=1 and  gst gne may havg¢M/N,Js/J,>h./J. In this case the tran-
s=1. Accordingly, the free energ§9) becomes that of the sition discussed in Sec. Ill C 4 will not occur and the order-
system of the background spins with interaction strengthing of the background will not involve an abrupt transition.
J=J, and external magnetic field=+M/NyJ;. The prob- A phase diagram relevant to the clustering problem is
lem is now reduced to the existence of a phase transition in drawn in Fig. 4. This phase diagram differs from that of Fig.
mean field Potts system in an external field. Since without & sinceN,/M =1000, in which case the critical poiti81)
field the transition is first order, the transition can be de-occurs at finiteJ;. The exact shape of the line connecting
stroyed only by a field of sufficient strength. Thus there is athis point to the triple point was not calculated.
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10.00 . In order to obtain the correlation between two spins be-
longing to two different groups we add to the Hamiltonian
Paramagnetic (2) an infinitesimal interaction of strengthy
M M
1 3 ~
1.00 H=H= =12 2 8,20 (33
c a<a' bl J
T 2
Superparamagnetic Differentiating the free energy with respectlpwe find that
010 Ferromagnetic (A) the correlation between spins belonging to different graups
' A 4 anda’ is given hy
9-1 ., 1
Ferromagnetic (B) (ordered noise) <5U_a g@) = TS Sc+ a (34)
[
%00 0.01 0.10 1,00 10.00
' ' Ja ' ' Using the values we obtained fer t ands at the tran-

sition lines (with J,=0) we find that the three phases are

FIG. 4. Phase diagram of the model with /M =1000,J,=1,  characterized by their spin-spin correlations in the following
J,=0.05 and q=10, as a function of J; and T*= way. In the paramagnetic phase
[2(g—1)In(@—21)/(q—2)]T. The number next to each transition line

denotes the subsection in which this transition is discussed. The 1
location of the phase transition lines is only qualitative in the two (642 ya)=(6,b sb)=(0,a so)=(0,a sa')=—, (35
regions which are close to the two triple points, but otherwise is b b b e d

based on Eqy(13), (19), (28), and(31). At the paramagnetic-superparamagnetic transition the cor-

. ' relation between spins belonging to the same group jumps
The analysis of the mean field model leads to the fOIIOW'abruptly while the correlation between other spins is un-

ing conclusmns_. For a reasonable ch0|c_e of the coupling Co.néhgnged. Hence in the superparamagnetic phase
stants there exists a superparamagnetic phase, characterize

2

-1(g-2 1 2

ao__a>2q—(q ) +—=1--4+0| —

i q q 2

by ordering within groups, which can serve to identify the

groups as clusters. The paramagnetic to superparamagnetic (8 L

transition is of first ordeffor g>2). At a lower temperature 7i g \g-1 q

a first order transition occurs to a ‘ferromagnetic’ phase (363
where ordering among different groups exists. This transition

is independent of the ordering transition of the background

spins. It occurs when the background spins are just ordered (5(,ib,0?>=<50?,0F>=(5(,?,0?'>= a (36D
enough to induce interaction of sufficient strengtkee Sec.

[Il C 2) between the groups. This is important since it means The “ferromagnetic” phase is characterized by the fol-
that clusters that are relatively close can feel each other atlawing correlations between neighboring spfusing (180),

higher temperature than that at which all points seem to bef18b), and(183]:
long to one cluster. It also means that the ordering is sensi-

tive to the global structure of the point distribution. Lastly, qg—1 cJ; 1

depending on the strength of the effective field which the <5a?,oj">>T[l_ze F(_ Js + azl' (373

groups exert on the background spins, the background spins’

transition to an ordered state is either of first order in nature 2(q—2) M1

or occurs gradually. (8,5 ,b)> ———In(g—-1) |+ =, (37b
(| q Nb q

D. Correlation functions

, : - : (9-2) [2(q—2) M 1

Of primary interest to us are the spin-spin correlation (5,,_b'oja)> In(q—1) N—+ a
' b

functions. These can be calculated from the first derivatives q 9(q-1) (379
of the free energy with respect th, J,, andJ; yielding
(recall aib denotes a background spin (q—2)2 1
(8,2 {,a')>—[1—2ex;{ - —l) +—. (370
-1, 1 %7 q(g—1) q
<5U?,U_a>=—s + —, (32a
: q q The significant change with respect to the superparamagnetic
L L phase is that spins belonging to different groups are now
(8,0 o= g 242 (32D correlated.
P q q
E. Susceptibility
<50'ia,0'1b>: q . Sstst a (320 The susceptibility of the system is calculated by adding a

magnetic field term to the Hamiltonian:
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200.0
—h( PIEEPEDY 6[»,1), (39)
a,i ! i I
which results in an additional term of the free ene(@y 150.0 .
- 1\ N 1
—,Bh[(q +—>+N—"(q t+ (39)
q q cl 4 XB 1000 | .
The first term in Eq(39) is obtained by using the definition
of my;, Eq. (7), the definition ofm,, and finally Eq.(8).
Defining h= gh, the susceptibility per spiry, is given by 500 ¢ T
o?Bf 1 s Ny ot
KZ fz—q ( —+S—~+N—b—~>. (40 0.0
B dh a \ oh  ogh Necogh "0.01 010 . 1.00 10.00
T
In the paramagnetic phase the only contribution to the
susceptibility is from the third term in E¢40): FIG. 5. The susceptibility divided by as a function of the
rescaled temperatuile® =[2(g—1)In(g—1)/(g—2)]T at a cross sec-
x Np,g—-1 1 tion of the phase diagram of Fig. 4 with=0.2236,N,=N,=10°
E = N T m (41 and other parameters as in Fig. 4. The very tiny peak‘at 0.065
C

corresponds to the transition from ferromagnéBg to (A) phases;
Note that in the paramagnetic phage O(1). At thetransi-  the large peak to the transition to the superparamagnetic phase; the
tion to the superparamagnetic phase there is a jump to grop atT* =1 signals the transition to the paramagnetic phase.
value of ordery~O(N./M)
tween points in the low density regions. As will be shown
x_ (a- 2)? Nc 42) later, our results depend only weakly on the definition of
ﬁ q%(q—1) M nearest neighbors. In the example of Fig. 1 we defined neigh-
bors as pairs of points whose Voronoi c¢ll8] have a com-
At the “ferromagnetic” — superparamagnetic transition the mon boundary. We set nearest neighbor interactions
value of the susceptibility is only slightly higher than Eq.

42): -
X 9-1Nc 43 TR 222 )’

,3 q® M’

In Fig. 5 we show the susceptibility E0) as a function of whereK is the average number of neighbors per site. The

the rescaled temperatufé for a cross section of the phase Main choice we have made is to skt to be a short range
diagram of Fig. 4 afi;=0.2236 and choosiny,=N,= 1¢° interaction. As is well known, this determines the properties

The susceptibility was calculated by minimizing numerically of the system to a large extent and with little dependence on

the details of the interaction. The effect of changing the in-
the free energy9) to find s,t, ands, and differentiating Eq. teraction type is considered in Sec. IV A.

(11) with respect toh to obtaings/dh, at/oh andds/dh. b. Calculation of thermodynamic quantiti€Ene ordering
Starting from high temperature the transition to the superproperties of the system are reflected by the susceptibility
paramagnetic phase is marked in Fig. 5 by a discontinuousnd the spin-spin correlation func'uce(rﬁS S) (where(- - -)
jump in the susceptibility. The transition to the ferromagneticdenotes a thermal averag@nce theJ;; have been deter-
phase is marked by a significant peak with a steep decreaggined, these quantities can be obtained by a Monte Carlo
on the lower temperature side, and the ordering transition ofmcC) procedure. We used the Swendsen-W&84/) algo-

the noise is marked by a minute peak. The susceptibility isithm [19], which is a nonlocal method. This is necessary
significantly different from zero only in the superparamag-since in the superparamagnetic phase local MC dynamics

netic phase. could lead to accidental correlations between different data
clusters; flipping a large aligned cluster will take a very long
IV. DETAILS OF THE CLUSTERING METHOD time. In SW dynamics whole clusters, roughly corresponding

to the “true” data clusters, are flipped in one time step so
In this section we describe our method in detail and demihat such accidental correlations do not occur. The SW
onstrate it on a toy problem. We also demonstrate the methnethod exhibits much smaller autocorrelation tinfd$]

od’s insensitivity to various details and parameters. ~ than standard methods and also provides an improved esti-
a. Determination of the InteraCtlonS]’J In common with mator[zo] of the Spin_spin correlation function:

other “local methods,” we first determine a local length

scale~a, which we chose to be equal to theerage nearest

neighbor distanceThe value ofa is governed by the high (8, &)= (q—1)(ni)+1 (45)
density regions and is smaller than the typical distance be- S8 q |
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0.07 — T — (b) Find the nearest neighbors of each point according to
0.06 | < Voronoi © 1 a selected criteriofe.g., Voronoi tessellatiofiL8]); measure

0.05 e . the average nearest-neighbor distaace

0.04 |- oo . (c) Calculate the strength of the nearest neighbor interac-

=

0.03 tions using Eq(44).
(d) Use an efficient Monte Carlo procedyri9] with the
Hamiltonian(1) to calculate the susceptibility.
> (e) Identify the range of temperatures corresponding to
0 002 004 006 008 01 012 014 the superparamagnetic phase, betwé&gy the temperature
T . .
of maximal y, and the(higheyp temperatureT,s where x
FIG. 6. The susceptibility density of the data set of Fig. 1 vsdiminishes abruptly. Cluster assignment is performed at
temperature. Tows= (Trs+ Tpo/2.
(f) Measure afl =T, the spin-spin correlation function
Here(nij) is the probability thas; ands; belong to the same <5Si ,s,-> for all pairs of neighboring pointEi andij .

SV\{: Cll_l:)itaetriﬁg the superparamagnetic pha&me would like (g) Clusters are identifiedﬁacﬁcording to a thresholding pro-
to measure a single quantity as a function of the temperaturg,e‘jure' 105 'sj>>_ 9 p(-Jlntsxi. i a-re deflneq as "friends.
which would signal changes in the clustering solution. OurThen all mutual friendsgincluding friends of friends, etcare

choice is to measure the susceptibilityf the system, which ~ @ssigned to the same cluster. We ch@se0.5.

is proportional to the variance of the magnetization (h) In cases where all data points are expected to belong
to a certain macroscopic cluster, we introduced an additional

N (Npma/N)G— 1 ste_p. Ip this step _each point is _Iinked f[o the neighbor with
X= ?(<m2>—<m>2), m= 1 (46)  which it has the highest correlation. This step expands clus-
q ters to their periphery, which is usually less dense and where

) consequently spin-spin correlation may be smaller than
HereNma,=maxNy,Nz, ... Ng} andN,, is the number of  Thjs step was not used in the example of Fig. 1.
spins with the valugu. e. The toy problenof Fig. 1 contains three dense regions

At low temperatures all spins are aligned and the fluctuagf 2729, 1356, and 1084 points on a dilute background of
tions of the magnetization are negligible, so the susceptibilitg31 points. The points are uniformly distributed in each of
x is small. AtTys, the pseudotransition from the ferromag- the regions, but the three dense regions are ten times denser
netic phase to the superparamagnetic phase, we observghn the background. Going through stégsto (d) we ob-

(see Fig. 6 a pronounced peak of. In the superparamag- tained the susceptibility as a function of temperature as pre-
netic phase fluctuations of the superspins or clusters acting agnted in Fig. 6. Note the similarity to the susceptibility
a whole result in a nearly constant susceptibility. As the temzyrye of the mean field model in Fig. 5. Figure 1 presents the
perature is further raised 6,5, the superparamagnetic to cjusters obtained &= 0.075 using step&) and(g). The
paramagnetic transitiony abruptly diminishes by a factor sjzes of the three largest clusters are 2771, 1386, and 1101
that is roughly the volume of the largest cluster. Thus theand the background decomposed into clusters of size 3 or
temperatures where a maximum of the susceptibility occurgmaller. We now discuss the effect of different details of the
and the temperature at whighdecreases abruptly can serve method such as the definition of neighbors, the type of inter-
as lower and upper bounds, respectively, for the superparagtion, the clustering temperature and the threstol®is-

magnetic phase. A surprisingly good initial estimate gk cussion of the effect of the number of Potts statgsjs
is found by the following considerations. First we approxi- postponed to Sec. V B.

mate the clusters by an ordered lattice of coordin-
ation number K and a constant interaction) ~(J;;)
~(1/K)exp(—(|x; —x;[|)%/2a%) = (1/K) exp(~3). We assume
that independently of the lattice type and its coordination
numberK, JK/T = const. For the Potts model on the square ~Since the data do not form a regular lattice, one has to
lattice [17] it is known exactly that const4 In(1+/g). It ~ SUPPly some reasonable definition for "neighbors.” A
follows that the transition should occur roughly at Voronoi cell structure is an appealing choice since it is

es_ 1 _ strictly geometric and has no parameters. Such a structure
Tes~e~ 2/4In(L+/q). Our definition ofJ;; thus ensures that 55 peen argud@1] to have intuitively appealing character-

T*'does not depend oK. An estimate based on the mean istics over other graph structures in data clustering. In high
field model yields a very similar value. dimensions, however, the computational cost of the Voronoi
d. The clustering procedur®©ur method consists of two tessellation is too high. Therefore, in dimensidhs 3, we
main steps. First we identify the range of temperatures whergsed thek mutual neighbors criterion. We say thatandv;
the clusters appedthe superparamagnetic phasgecondly, have a mutual neighborhood valleif and only if v; is one
at some temperature within this range the correlation of nearpf the K nearest neighbors af; andv; is one of theK
est neighbor spins is measured and used to identify the clusrearest neighbors af,. Only points with mutual neighbor-
ters. The procedure is summarized as follows: hood valueK are allowed to interact. In cases whefeis
(a) Assign to each point; a g-state Potts spin variabe  small or the dimensio® is high, the resulting interactions
(here we chosg=20). do not span all the points to one connected graph. In such

A. Independence of or dependence on choice of parameters

Definition of neighbors
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TABLE I. Comparison between different nearest neighbor 0.07 | | | | T |
graphsK is the actual average number of neighbors per sitis. 0.06 [- Eig; —
the average nearest neighbor distance. For each nearest neighbor 0.05 (44) —
graph cluster sizes were always taken at a temperature midway ry 0041 : -
between the two transitions that bound the superparamagnetic Yook I i
phase. 002 | . |
0.01 - v i
Nearest neighbor Bottom Top Middle Next ; . . . ‘
graph K a cluster cluster cluster cluster 0 005 01 015 02 025 0.3 035
T
“True clusters” 2729 1356 1084 FIG. 8. Th ibility densityT/N of the d ¢ Eig. 1
K=18 14.33 00287 2753 1373 1090 1 as a fu.nc.tioneofs ltjsgigtr:"lpl)gatjr?:}gr diffgretnf tySfeasSoefti(r)]terlgt.:tions
Voronoi cells 599 00254 2771 1386 1101 3 Jij» as in Eqs(44), (47), and(48). Here the Voronoi cell neighbor
K=14 10.87 0.0252 2756 1372 1091 1 definition andq= 10 were used.
K=12 9.14 0.0233 2761 1379 1093 6
K=6+MST 4.04 0.0163 2759 1374 1101 8 1 a
Ji==~ 7 (47
TR dij

cases we superimposed on the edges obtained with this cri-
terion the edges of the minimal spanning t(B45T) associ- . . : . : -
is appealing since it does not impose any characteristic

ated with the data points. h lath . h
We tested the clustering procedure with the data set ofNgth scalethe constane can be absorbed into the tem-

Fig. 1 using several nearest-neighbor definition. These inP€rature. Another short range type of interaction that was

clude Voronoi tessellation, thi€ mutual neighbors criteria  €Stéd was

with K=12, 14, and 18 an& =6 mutual neighbors with a

superimposed minimal spanning tree. The resulting actual J_:l F{ dij
ij

average number of nearest neighbétsand the average
neighbor distanca are given in the first and second columns
of Table I. These two quantities reflect rather large differ-The susceptibility density T/N of the data set of Fig. 1 as a
ences in the properties of these nearest neighbor graphisinction of the temperature for different types of interactions
However, the important features of the clustering solutionJ;; as in Eqs.(44), (47), and(48) is shown in Fig. 8.
obtained by the clustering procedure did not change signifi- The two susceptibility curves corresponding to the short
cantly. range interactions are rather similar, differing only in the
In Fig. 7 we show the susceptibility curves correspondingtemperature scale. The susceptibility of the interaction of
to the data of Fig. 1, which were obtained with the differenttype (47) exhibits a small extra peak at~0.27 and decays
nearest neighbor definitions. We note that all curves arat the transition to the paramagnetic phase at a slower rate
gualitatively identical and exhibit the same main featuresthan the susceptibility curves of the short range interactions.
with the only difference being the temperature scale.
In columns 3-6 of Table | we give the sizes of the four C. Sensitivity to changing the interaction range
largest clusters, obtained at a temperature midway between
the two transition temperatures that bound the superparamag—
netic phase. We note that the differences are rather small. ¢

(48)

It is instructive to consider the effect of varying the inter-
tion range, i.e., altering the interactidy) of Eq. (44),
replacinga by fa. The interaction range is decreasga-

B. Dependence or independence on the form of the interaction ~ creasedl by deC.re_asing(in.creaSing .f, while f=1 corre-
sponds to the original choice of settingequal to the average

Possibilities for the de»pen»dence of the interaction Streng”ﬁearest neighbor distance. In Fig. 9 we show the susceptibil-
Jij on the distancel;; =|[x; —x;[|, other than Eq(44), were ity densityxT/N of the data set of Fig. 1 as a function of the
also considered. For instance, a power law interactfon temperature forf=%,1,2. By decreasing the interaction

neighbors only such as range by a factor of 2i.e., usingf=0.5) the ferromagnetic

0.07 T T T T T T T
0.06 - = Voronoi — | 0.07 | : : : : ‘ |
i K=18 T
0.05 14 :ft: K=14 — 0.06 | » LO_.? i
I K=12 ---- i : =1
el (IR E K=6+MST — | 0.05 _' =2
Yooos i — ry 004[ L i
002 I 4 ¥ ogo3t : i
001 f %o N - 0.02 Co 4
0 1 ] ! N ) 0.01 »l - o _
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 N s
T

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
T

FIG. 7. The susceptibility densityT/N of the data set of Fig. 1
as a function of the temperature for different definitions of nearest FIG. 9. The susceptibility densityT/N of the data set of Fig. 1
neighbors. as a function of the temperature for different valued of



3778 SHAI WISEMAN, MARCELO BLATT, AND EYTAN DOMANY 57

6000 e T T T T 0.15 T T T T n 0.60
cluster 1 <— _| 0.407
5000 cluster 2 -+ - M 0.204
L cluster 3 H— _| T
4000 cluster 4 -+ - 0.104 {0.08
cluster . L er 5 2— _|
size 000 0.06
2000 T 0.051 40.04-
1000 B
B 0.02
() R — LR NN B
0 002 004 006 008 01 0.12 014 0.00 v t 7 i T 0.00 8 T
T 4] 1 2 3 4 5 0 1
(a) I1x-x1l/a (b) < sisj>

FIG. 10. Sizes of the five largest clusters obtained as a function
of temperature, using= 20, Voronoi tessellation, and interaction FIG. 11. Frequency distribution @#) distances between neigh-
(44). boring points of Fig. 1(scaled by the average distarep and (b)

. . spin-spin correlation functions of neighboring points.
phase, where most spins belong to a single cluster, practi-

cally disappears, but the other, more important, features of

the Clustering Solution are unchanged_ On the Other hanaeighboring regions with different densities, which is consid-
dramatic changes in the clustering solution occur when th&red in Sec. V C.

interaction range is increased by a factor of X€2). In

this case the superparamagnetic phase almost disappears and

the results are compatible with the existence of only oneA. Significance of&, the correlation length of the fluctuations
cluster. This occurs since interaction between spins in the for the clustering solution

dilute background region is not suppressed sufficiently when
compared to the interaction between spins in the high density
regions. We note that such a problem can occur with real Consider a local region where the typical distance be-
data even when using our original choifiee., f=1). This  tween neighboring points id, at a temperatur&. The ef-
can happen if the number of points in the dilute backgroundective local neighboring spins’ coupling joca~ J;;(d)/T
regions is too large compared to the number of points in th&€ts a localdimensionlesscorrelation length of the fluctua-
high density regions. In this case the value afwill be  tions, & The number of spins whose fluctuations are corre-
governed by dilute regions and can be too high, thus nolated is then roughly®. Starting at the high temperature
allowing the clustering solution to be sensitive to the exis-phase, as the temperature is decreagedcreases. Whe#d
tence of the dense regions. Thus in such cases it would b&aches a canonical valug, a transition occurs and the

1. The clustering criterion

useful to choosd <1. region transforms into an ordered state. Thus we could say
that the spins of a region are classified as forming a cluster
D. Sensitivity to the clustering temperature when the temperature is such that the region of spins whose

] ] ] fluctuations are correlated extends over a canonical number
In Fig. 10 we show the sizes of the five largest clustersyt ghing 2 penser regions have a stronger effective local

obta|r|1|ed_ asa f‘c‘j”Crf'O'? of tem_pera';ure, using20, VOLOHO_' couplingK |, and therefore reach the canonical vafyeat
tessellation, and the interaction of E¢4). We see that in a_higher temperature.

the superparamagnetic phase the number of macroscopic
clusters and their sizes are stable with respect to changes in

temperature. The sizes of the three largest clusters in the 2. Relevant known properties
temperature range 0.052r<0.096 differ at most by 2% of the Potts model correlation length
from the cluster sizes obtained at the clustering temperature The correlation length near the transitiaja,, is strongly
Teus=0.075. dependent om and the trend is that at the transitigg is
smaller for largem. It is known[17] that the transitior(for
E. Sensitivity to the spin-spin correlation threshold 6 ordered latticesis first order forg>4 in two dimensions and

Classification is not sensitive to the value of the threshold®r d>2 andD=4, while itis second order foq<4 in two
6, and values in the range 8:@<0.9 yielded similar re- dimensions and|=2 in D=4. For example, in two dimen-
sults. The reason is that the frequency distribution of theions forq=4, &,(q) ==, for q=10 it is estimated22,12
values of the spin-spin correlation function exhibits two 8S&c(10)~=10.6,£:(15)=4.2, £(20)~2.7. In Ref[12]itis
peaks, one near d/and the other close to 1, while for inter- also shown numerically that in two dimensions at the transi-

mediate values it is very close to zero as is shown in Figj[ion the correlation length in the ordered phase is equal to
11(b). that of the disordered phase.

The disorder present in our systems plays, of course, an
important role. Work on two-dimensional Poissonian random
lattices of Voronoi-Delaunay typébut constant interaction

In this section we use heuristic arguments and experistrength shows[23] that the transitior{for g=8) maintains
ments with artificial data to consider how our method worksits first order nature. On the other hand, in ordered square
for non-mean-field situations. In Secs. V A and V B we con-lattices with quenched bonstrength randomness it was
sider what we expect to happen in regions with a uniformpredicted[24] and found numerically25] that the transition
density of points, neglecting the effect of interaction betweerbecomes second order.

V. PHYSICAL INTERPRETATION OF THE METHOD
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3. Length scale of density estimation and the correlation length 14 | | |

As we pointed out, the superparamagnetic clustering Lzr o0 ]
(SPQ method is similar to a density estimation method. 1r 9=20 —
More precisely, at each temperature each region is clustered T 08T 7
only if its density is above the clustering density threshold. M 06 - \ .
In any density estimation there is a length schle that 04 Y7 :
determines the scale on which the density is averaged. Den- o2 b NS 4
sity fluctuations on scales smaller thhnare attenuated in 0 ./ T .
height on the one hand but their range of influence increases 0 005 01 015 02 025

to I, on the other hand. Density fluctuations on scales larger T

thanl, will be modified only at their periphery. One usually  FIG. 12. The scaled susceptibility densfity?/(q—1)] Tx/N of
refers tol; as setting the resolution of the density estimation.the point distribution of Fig. 1 as a function of the temperature for
Note thatl is a parameter of the density estimation methodseveral values of.

and is not directly related to any cluster size, which is a

property of the point distribution. In the SPC method, thespins. We say that the accuracy of the clustering solution is

fr?er:frﬁgl?/rr]\a:ren?gtgghlzvﬁ)rleor;q(we SF(’:(?{'?S (:;)?rrlagg?esrtwf I?fisthtﬁehigh if its boundary successfully matches an equidensity line
characteristic length scale over which spins fluctuate in Of the “true” density profile. One reason for deviations of

coherent manner relatively to their average state. It seen??e boundary from such a line can be due to the existence of

plausible that for the SPC method, at any temperature,'ne features in the underlying “true” density profile such as

|~ &d (we choosé, to have units of length To Substantiate spatially complicated cluster boundaries or Iarge_ densi_ty gra-
this, we show now that the role ¢f in a density estimation ients. To overcome such features a small density estimation

procedure is similar to the one played byn our clustering length scald . (high resolution is beneficial. On the other
method. hand, ifl is too small(the resolution is too highthe exis-

For example, consider a region that is in the disorderedence of random local density fluctuatiofdue to the finite
phase at a temperature slightly above its ordering temperd&umber of the data pointan also lead to errors in the cluster
ture. The average density of points is only slightly below theboundary.
clustering density threshold corresponding to that tempera- Note that the spins within a cluster boundary are in the
ture, so that most neighboring points are not assigned to therdered state while those outside the cluster boundary are in
same cluster. Suppose that at some local re¢goraller than the disordered state. Thus at the boundgeyé. so that the
le) the density is sufficiently higher than the clustering den-density estimation length scdlgat the boundary of the clus-
sity threshold, such that points at the local region are aster is determined by, .
signed to the same cluster. This should happen if the density
of the surrounding region is only slightly below the cluster-
ing threshold and the attenuated estimated local density is
above threshold. Since density is averaged on a scdlg, of
we would expect this cluster to be larger for lardggr In- Here we summarize some qualitative features of the re-
deed, in the SPC method a region of higher density acts assults of several experiments with artificial data, which were
pinning center for a fluctuation of higher spin ordeglative  meant to examine the effect of changiggThe most basic
to the surrounding disordered regjoprausing neighboring finding can be summarized as follows: In a region that is in
spins to be classified to the same cluster. This cluster will b@ disordered phase slightly above its ordering temperature,
larger for larger correlation length the clusters are smaller for larggr Conversely, at a tem-

On the other hand consider a region that is in the ordere@erature slightly below ordering, the clusters are larger for
phase at a temperature slightly below its ordering temperdargerq. Since we know thag is smaller for largenq, this
ture. The average density of points is such that most neighfinding suggests that the correlation lengtis indeed related
boring points are classified to the same cluster. Suppose thai | .
at some local regiorismaller thanl,) the density is suffi- For example, just below the ferromagnetic to superpara-
ciently lower and points next to this place should not bemagnetic transition the single large cluster is smaller for
assigned to the same cluster. We would expect the “nonclussmallerq, while just above the transition the largest clusters
tered” region to be larger for largdg. Indeed, a region of are larger for smalleq. Similarly, just below the superpara-
lower density should act as a pinning center for spin orienmagnetic to paramagnetic transition the macroscopic clusters
tation fluctuations relative to the dominant spin orientation ofare smaller for smalleg, while just above the transition the
the ordered phase region, causing neighboring spins not to hargest clusters are larger for smaller Related to these
classified to any large cluster. The “nonclustered” regioncharacteristics of the cluster sizes at the two transitions
will be larger for larger correlation length Hence we con-  bounding the superparamagnetic phase is the fact that for
clude that is indeed proportional tb,, as stated above. We higherq the decrease in cluster sizes, as the temperature is
describe below some results of tests where the effect afaised, is smaller. On the other hand, another related feature
changingé was studied by changing the Potts paramgter is that for higherq the temperature range of the superpara-
magnetic phase becomes smaller. For example, in one ex-
periment(data not shownthe existence of four dense groups

Suppose that according to our clustering solution a clustewas difficult to detect because the density in the region be-
has a certain boundary between it and the surrounding noisween groups was just 0.8 of the density within groups. The

B. g dependence of the spatial resolution
of the clustering solution

4. Resolution and errors in cluster boundaries
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| ter,” a circular cluster whose radius around the center of the
- distribution ¢ =0) is such that it includes the same of hum-
ber of points. This was done with 2000 poinks= 10, at a
temperature where there were 995 points in the largest clus-

s -
e ’ ter. Forg=5, 136 points of the largest cluster did not over-
Ar ngg — lap with the “central cluster,” while forqg=20 only 116
5 H q=5 — - points did not overlap with the “central cluster.”
-6 1 1 1 1 1 1
0 005 01 015 02 025 03 0.35 2. g dependence of the definiteness of the clustering solution
T

) _ Connected to the question of the spatial resolution of the
FIG. 13. The entropy density/N. of the mean field model of  ¢|ystering solution is the question of how definite is the clus-
Sec. lll as a function of the temperatufenith same parameters as tering solution. Recall that our final clustering solution is
in Fig. 5 for different values of the Potts varialte based on averages of spin-spin correlations taken from a

temperature range where four clusters could be detected Wggobability distributionof states. Thus the clustering solution
reduced to one point far= 20 but was larger foa=10 and 'S more definite if the probability distribution is narrower, or
even larger f0|q26 o 9 q if the entropy(which is the missing information about the

. - .. state of the systejris smaller.
In Fig. 12 we show the scaled susceptibility density :
[g%/(q—1)] Tx/N of the point distribution of Fig. 1 as a In Fig. 13 we show the entroflgee Eqs(9) and(10)] of

. the mean field Potts model with the same parameters as in
function of the temperature for several valuegjofThe fac-

S Fig. 5, as a function of temperature fqr=5,10,20. A dis-

2 _ ) ) )
tor g*/(q-1) ensures that _the scaled susce_pt[blllty has. thEf:ontinuity in the entropy at a higher temperature corresponds
same value for alty in the high temperature limit. It is evi-

L ; . to the paramagnetic to superparamagnetic transition and at a
dent that the transition at the high temperature side, wher wer temperature to the ordering transition of the noise

the dense clusters transform from gdlsord_ered to_ an Ordereg)ins. The largeny is the larger are these discontinuities.
state, becomes sharper for increasipnd hat is, the increase

in x at the transition is larger for larger. This is consistent Thus the largeq is the more significant is the reduction in
wit)r(1 the negative monoto?wic depen%g.nceggfon q in or the entropy associated with the ordering within clusters. This

; " " _makes the clustering solution of th rparamagnetic ph
dered lattices noted above. Just above the transition a larg akes the clustering solution of the superparamagnetic phase

correlation length implies fluctuations of larger extent on a, o definite for higheg. This is in contrast to naive intu-
) 9 P SO 9 ... ition that higherq will result in a higher entropy and a less
disordered background, resulting in a larger susceptibility., . .
" ; -2 definite answer.
Just below the transition a larger correlation length implies
fluctuations of larger extent on the background of the ordered

clusters. Since the susceptibility in this phase is due to the C. On the effect of density differences

size of the ordered clusters, this results in a smaller suscep- Here we focus on the effect of interactions between re-
tibility. This analysis is relevant only in the immediate vicin- gions of different densities which was completely neglected
ity of the transition. For example, far=5 atT=0.1600 the in Sec. V A. We also consider here how the clustering solu-
scaled susceptibility is 0.051, while for=20 atT=0.1075  tion changes as the thermodynamic limit is approached or
the scaled susceptibility is 0.096. Here we compared for botivhen the number of sampled points increases.
values ofq the highest temperature where yet three large To this end consider the following information processing
clusters are observed. The same effect is the source of they problem, which is a finite-dimensional analog of the
fact that the ferromagnetic to superparamagnetic transition ignean field model described in Sec. Ill. We have two rela-
sharper for higheg. In the superparamagnetic phase itself,tively distinct species, horses and donkeys, and a third inter-
where fluctuations in the size of the three large clusters denediate and less distinct species, mules. All points that cor-
not play an important role, the system can be approximategespond to horses and donkeys fall within two
as that of three noninteracting superspins of shktesN,,N3.  hyperrectangular regions of dimensibn whose side in the
Indeed, by using Eq(46) and the sizes of the three largest first dimension is of lengthV, and all the other sides are of
clusters, a reasonable approximation of the susceptibility ifengthL. The two rectangles are a distarig,, apart in the
obtained, confirming that the susceptibility is smaller forfirst dimension, and contain points of equal uniform density,
higher g. The reason is that for highey the dominating p, . All the mules fall within the hyperrectangle of length
configuration, where the three superspins point in different, .. in the first dimension and length in all other dimen-
directions, is more dominant whereby fluctuations in thesjons, between the two hyperrectangles of the horses and
magnetization are suppressed. donkeys(see Fig. 1% The density of points within this rect-
angle is lowerp,, wherep,<py . As more and more animals
are samplecp, and p, increase but their ratio,= p,/p, is

In another experiment a two-dimensional point distribu-fixed, sincer , is set by the relative homogeneity of the spe-
tion with a single group shaped as a cdri®(#) uniform, cies. The corresponding typical nearest neighbor distances
and P(r)=6r(1—-r)] was used. We compared the clustersaredh,|=p,{|l’D for the high and low density regions, respec-
obtained with differenty at temperatures where the number tively.
of points in the largest cluster was equal. We found that the Neglecting the interactions with the mules, we expect, as
other clusters were larger for smaligrin addition, the larg- discussed in Sec. V A, that the two denser regions will order
est cluster was compared to the corresponding “central clusat a temperaturd |, when their local effective coupling is

1. g dependence of the effect of density fluctuations
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state increases because of the surface tension between the
ordered and the disordered stateg,y. Thus
Fap~Fa+20,4L°1. On the other handr, ,~F,. Thus

due to the boundary fields, ,<Fq ,, the bulk ordered state

is favored and the mules’ region will become disordered only
at a higher temperaturgS> T independent

ety ——g Does this picture hold as we increase the total number of
pointsN ? First, it may be shown that neglecting the effect of

FIG. 14. A schematic three-dimensional demonstration of thethe boundaries of the different regions on the valua sie
information processing toy problem. Points corresponding to horseﬁave

fall within the rectangle on the left. Points corresponding to don-
keys fall within the rectangle on the right. Points corresponding to
mules fall between the two rectangles.

L

mules

W Pt dinger | 2Wr,+ i 3
2er+ dinter ! 2er+ dinter

a= dh . (50)
approximately equal to a canonical constalft,)/Tp~K.. ) ) )
Deviations from this relation will occur mostly because of Since W.r,,D, and diye, are independent oi, the ratios
the finite size effect due to the finite number of points withindn/@ andd,/a and, consequently, the couplingéd,) and
each region. The interaction with the mules has a negligiblé(di), are independent df. Accordingly, the dependence of
effect since the coupling within the muleXd,) is exponen-  the temperatures;; andTf""**P*"®"on N is only a finite size
tially smaller thand(d;,) [see Eq.(44)]. effect, decaying adl— .

Following the same logic one would expect the same to As to the true transition temperature of the mules region,
happen within the mules’ region at atemperamﬁ@depe“dem the main thing to. note _is that &— oo the number of spins
where J(d,)/T&ndePendent ik - Becausel(d|) is exponen- across the first dimensiod;ye/d|— as well. For a given
tially smaller thand(d,,), Tlc,independen%-l-ﬁ_ However, at tem- N as the temperature is decreased, the range of influe)ce,

of the boundary “fields,” induced by the neighboring horse

peraturesT, T<T, each of the two denser regions are or- : ; ; .
gnd donkey regions, increases. This range determines the rel-

dered and act on the mules’ region as two strong surfac ¢ di ol lation | R R/ The t .
fields, each pointing in some time dependent direction. wevan .Hlmensmn ess correla |onc ené;‘t s de r:/;1(rj1$|-
claim that these surface fields act so as to increase the ter{O" Will occur at a temperatur@” where £(T;) ~ dinter/d -

perature at which the mules’ region orders so thatoince § monotonically increases ab decreases, al in-
T¢>> TG independent creasedl| must decrease. However, as we have ndtgds

c,independent
First we claim that the two surface fields tend to bebound from below byTyeePeneer

aligned. To see this, assume that the mules region is at 10 Verify these expectations we have performed several
o Independent \ith free boundary conditions. Next add the €XPeriments with a two-dimensional sample with three par-
two adjacent ordered dense regions acting as orderingllel rectz_ingles ten times den_ser than the sparse bacl_<gr01_md
boundary fields pointing in a time dependent directithe urrounding them. T_he experiments were repeated with dif-
ordered dense regions could also be viewed as two additionffr€nt number of pointsl=500, 2000, and 8000. We found
ghost spins interacting with the boundary spins of the muledhat asN increased, the paramagnetic to superparamagnetic
region. Then consider the two possible macroscopic statedransition temperature changed very little, while the ferro-
A “parallel state” where the two boundary fields point in the Magnetic to superparamagnetic transition temperature de-
same direction, and an “antiparallel state” where the twoCréased as expected.

boundary fields point in different directions. The difference Rdegarddlr:g the manner of the approach af to
between the free energies of the antiparallel siggand ~ Ti"" - asN—e, we note a related study of the®

free energy of the parallel stakg, can be written as theory with disordering boundary conditions by Sorng2
- who found thatT{indePendent T¢_ 1 for |> ¢, . Here &, is
Fap—Fp~consXL”"*~T In(q—1). (49 the correlation length at the transition without boundary

fields, and in our cask=djye,/d, .
The first term is the energy cost of an additional surface of Tg summarize, we find that ds increasesTf decreases
unsatisfied bonds. This is a macroscopic term, proportionapile T¢ hardly varies, so that the extent of the superpara-
to the cross section of the mules’ regibf . The second magnetic phase increases. This can be regarded as a sign that

term reflects the entropic gain of having the boundary fieldg,yr method only improves as more points are sampled.
point in different directions. Since there are only two fields
this term is not macroscopic. Thus it is clear that at
Teindependent anergy wins and the “parallel” state has lower
free energy. We have shown that the thermodynamic collective behav-
Next we claim that the “parallel” state favors an ordered jor of inhomogeneous Potts models can serve as an excellent
state of the mules’ region and that thereforeTat"*Pe"®™ ingicator for the existence of collective structures in data. We
the mules’ region is ordered. By definition of a first order have analyzed in detail a mean field model of granular Potts
transition, without boundary fields the free energy of themagnets representing an idealized data clustering problem.
bulk ordered state and of the bulk disordered state aThe main finding was that with a reasonable choice of the
Teindependeniyre equalF,=F4. But with the boundary fields coupling constants a superparamagnetic phase exists that is

in the “parallel state” the free energy of the bulk disordered characterized by ordering within groups. In this phase the

VI. SUMMARY
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spin-spin correlation function can serve to identify the mag-
netic grains as clusters. At a lower temperature, when the 1= My,M,, . (A1)
background spins are just ordered enough to induce interac- &y
tion of sufficient strength between the groups, a transition t
a ferromagneti€¢A) phase occurs, where ordering among dif- OBy using Eq.(7), the definition m7 (IM)2ad;
ferent groups exists. summlng ovemr, we obtain

We have demonstrated the method on a two-dimensional
pedagogical data set showing that it exhibits a thermody- 2 2 5 M(1-s) +Msh
namic behavior similar to that of the mean field model. The 4 ' & a7 q My
method’s performance on complicated real life data exhibit- (A2)
ing a complicated hierarchical structure of clusters was re-
ported in[11]. A comparison to other nonparametric tech- Since by definitionz ,my,, =1, we obtain
niques clearly indicated11] the relative success of our
method. We have shown that the method is robust in the M(1-s) o
sense that it is not sensitive to many of its details. It is not I= —q Msgl MpyM,y -
sensitive to the interactiord; , as long as they decrease with

the distanced;;, in a broad sense: It is not sensitive to the Thus the order within groups sets the strength of coupling
definition of neighbors. It is somewhat important though thathetween the background spins and the superspins. This is a

the interaction be of short range type. The results are nd$pecial property of this mean field model. Next, using
very sensitive to the interaction rangeas long as it is not

too long. It was also shown that the thermodynamics of the . (g-1)s+1 . 1—
Potts model imposed on the data imply a robustness of the m=————, My =—", (A4)
clustering solution. The clustering solution is not changed q q
substantially by changing the clustering temperature as lon
as it is within the same superparamagnetic phase. In additio
because at any temperature neighboring spins are eith
highly correlatedin their ordered phager uncorrelatedin 1 g-1
their disordered phagethe clustering solution is insensitive | = M( + —sts)
to the spin-spin correlation threshotd q
We have discussed the connection between the correlation
length of the fluctuations and the resolution of the clustering APPENDIX B: SUPERPARAMAGNETIC TO
solution or the density estimation length scale. In relation FERROMAGNETIC TRANSITION
with this connection we demonstrated several aspects of the
Potts parameteq. The first is that the spatial resolution of
the clustering solution is highef{is smallej for higherq.
A higher g increases the definiteness of the clustering solu
tion in two senses. The first is the one discussed in Se
V B 2. The second is that changes in the clustering solutio
as a function of temperature become more abrupt while thé
clustering solutions themselves in the superparamagneti
phase exhibit less variation. The tradeoff is that when th q.(11a

a7 and

M(l S)

(A3)

nd a similar relation between;,, and the background order
@arametent in Eqg. (A3), one obtams

(A5)

This Appendix includes details of the mean field equa-

tions solution of the superparamagnetic to ferromagn&tjc

transition given in Sec. lll C 2. As pointed out in Sec. Il C 2

éhe starting point of the solution is Egél5), (119—(110),

r(flnd (16). It is assumed that at the transition-3~ <1 and
s—s <1.

To first order ine we obtain by subtracting E¢15) from

true clusters are difficult to detect, with highgithey might -

not be detected since the temperature range where the super- q ~B1,=B VM NbJ ts
paramagnetic phase exists becomes smaller. Finally, in Sec. 1+ (q—2)s™—(q—1)(s™)? ! N e’

V C the effect of interactions between regions of different (B1)

densities was considered and the existence of the superpara-
magnetic phase as more data points are sampled was showssing Eq.(B1), to second order i, Eq. (16) becomes

(@=1) VMN, . Np ,BJz(q_l)t
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Next we assume that<t<1, so that to first order inh we
obtain from Eq.(11b) equation(17).
Substituting Eq(17) in Eqg. (110 we obtain

APPENDIX A: ON OBTAINING THE FREE ENERGY
OF THE MEAN FIELD MODEL

Here we illustrate the manner in which the nontrivial third M (8BS )2 M
term in Eq.(9) is obtained. The starting point is the energy 3S A
term in Eq.(3) due to the interaction of the background spins N (g—BJ, ) {In[1+(q 1)s]-In[1 sl}=0.
with spins belonging to groups: (B3)
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ExpandingS(t) to second order in, neglecting terms pro- usual transition temperature of the noise had it not been in
portional to B(VMNy/N.)Jstse, and using Eq(17) we ob-  contact with the groups. Using Eq4.9) and(BS) in Eq. (17)
tain from Eq.(B2) we obtain Eq(18b). Note that sincé\,> M, the jump int at
the transition is infinitesimal and the assumptie®l is jus-
q—1 M (BJzs )%, tified.

24 N_c (q_ngz)S To find s~ and e we assume thalz<<1, which through

Eq. (19) implies thatB;s>1. Thus our assumption is that the

Equations(B3) and(B4) are identical with those of the ho- superparamagnetic to ferromagnetic transition occurs at a
mogeneous mean field Potts mofEl] with order parameter much lower temperature than the paramagnetic to superpara-
s and with coupling constaniBd=(BJzs~)?/(q— BJ,). magnetic transitiojsee Eq.(13)]. Therefore we expect the
Their solution is thus given by the “canonical” solutiggee ~ Vvalue ofs™ to be very close to 1. Using E(L9), writing s~

Eq. (13)] for the inverse transition temperatufg, ass =1-4, and assumingg<1l, we find from the two
leading terms of Eq(15) that
(Btsdas™)? _2(9—-1)

(- Bisda)  4—2 2q(q—1)In(q—1)

In6= —Cﬂ, where c= \/
and by the canonical value for the order parameter Viaae J3 q-2
Eqg. (14)] in the ferromagnetic phase at the transition, Eq. (B6)
(189.

By assumingB;J,<1 Eq. (B5) simplifies to Eq.(19), Thus the assumptiod<1 is self-consistent and E(L8¢) is
which defines the transition temperature. Sisce=0(1), obtained. Inserting Eq19) and Eq.(183 in Eq. (B1), to first
the assumptions;J,<1 is justified in the regime where order in §, we obtain by usings<+N,/N.J3, Eq. (180d.
J;>J,. Physically, in this regime the transition to the ferro- This small value fore justifies all the neglections of terms
magnetic phase occurs at a much higher temperature than thdéth ¢ made above.

M - p—
“NS®=0. (@

In(q—1), (B5)
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